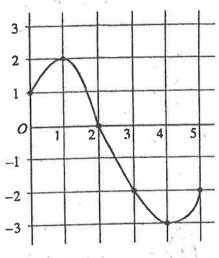
APHO3 PHS

Let R be the region in the first quadrant under the graph of $y = \frac{1}{\sqrt{x}}$ for $4 \le x \le 9$.

- Find the area of R.
- If the line x = k divides the region R into two regions of equal area, what is the value of k? (b)
- Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are squares.


1995 - BC6

Let f be a function whose domain is the closed interval [0, 5]. The graph of f is shown below.

Let $h(x) = \int_{0}^{\frac{x}{2}+3} f(t) dt$.

- (a) Find the domain of h.
- (b) Find h'(2).
- (c) At what x is h(x) a minimum? Show the analysis that leads to your conclusion.

Graph of f

Consider the curve defined by $-8x^2$

(a) Find $\frac{dy}{dy}$

(b) Write an equation for the line tangent to the curve at the point (4, −1).

- (c) There is a number k so that the point (4.2, k) is on the curve. Using the tangent line found in part (b), approximate the value of k.
- (d) Write an equation that can be solved to find the actual value of k so that the point (4.2, k) is on the curve.
- (e) Solve the equation found in part (d) for the value of k.

1995 - AB2

A particle moves along the y-axis so that its velocity at any time $t \ge 0$ is given by $v(t) = t \cos t$. At time

t = 0, the position of the particle is y = 3.

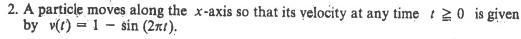
(a) For what values of t, $0 \le t \le 5$, is the particle moving upward? (b) Write an expression for the acceleration of the particle in terms of t.

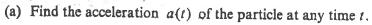
- (c) Write an expression for the position y(t) of the particle. (d) For t > 0, find the position of the particle the first time the velocity of the particle is zero.
- 1989-BC1

- 1. Let f be a function such that f''(x) = 6x + 8.
 - (a) Find f(x) if the graph of f is tangent to the line 3x y = 2 at the point (0, -2).

(b) Find the average value of f(x) on the closed interval [-1, 1].

6. Let f be a differentiable function, defined for all real numbers x, with the following properties.


(i)
$$f'(x) = ax^2 + bx$$


(ii)
$$f'(1) = 6$$
 and $f''(1) = 18$

(iii)
$$\int_{1}^{2} f(x)dx = 18$$

Find f(x). Show your work.

1988-AB2

(b) Find all values of t, $0 \le t \le 2$, for which the particle is at rest.

(c) Find the position x(t) of the particle at any time t if x(0) = 0.

1987-AB3

3. Let R be the region enclosed by the graphs of $y = (64x)^{\frac{1}{4}}$ and y = x.

(a) Find the volume of the solid generated when region R is revolved about the x-axis.

(b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when region R is revolved about the y-axis.

1990 - AB 6

6. Let f be the function that is given by $f(x) = \frac{ax + b}{x^2 - c}$ and that has the following properties.

(i) The graph of f is symmetric with respect to the y-axis.

(ii)
$$\lim_{x \to 2^+} f(x) = +\infty$$

(iii)
$$f'(1) = -2$$

(a) Determine the values of a, b, and c.

(b) Write an equation for each vertical and each horizontal asymptote of the graph of f.

(c) Sketch the graph of f in the xy-plane provided below.