Algebra 1 Week 7 Block Warm Up

1. Skill 1: Solve an Equation

2(4s - 5) = 3(6 - 2s)

- 2. Skill 2: Proportional Reasoning
 In the past two years, a retailer has opened 232 stores. If the rate of growth remains the constant, how many stores will open in the next 3 years.
- **3**. Solve for y: 3y 27x = 33
- **4**. Solve the inequality and graph the answer on a number line. $-9 + 2a \le 3a$

Skill 3: Solve and graph compound inequalities:

5. Solve the absolute value:

$$|x+5|=3$$

- 6. Your friend is selling 5 tickets to the next ice hockey game for \$80.00. You can buy 3 tickets online for \$50.00. Which source offers the best price. Show work and explain in writing.
- 7. A toad travels 10miles/per day. How far will it travel in 5 hours?

Wk 7 Block

Absolutely Less

Answer each question below:

True or False?

c.
$$|-1| < 2$$

d.
$$|0| < 2$$

- 2. Circle numbers in the set S that can be substituted for x to make the inequality |x| < 2 true. $S = \{-3, -2.75, -2, -1.33, -1, 0, 0.5, 1, 1.99, 2, 2.66, 3\}$
- 3. Circle numbers in the set S that can be substituted for y to make the equation $|y| \le 2$ true. $S = \{-3, -2.75, -2, -1.33, -1, 0, 0.5, 1, 1.99, 2, 2.66, 3\}$

Every absolute value inequality with < or \le represents \underline{two} inequalities combined with "and":

$$|x| < 2$$
 means that $x < 2$ and $x > -2$.

It means x < 2 because for numbers less than 2, the absolute value will be less than 2: |1| < 2It means x > -2 because for numbers greater than -2, the absolute value will be less than 2: |-1| < 2

The numbers that work in |x| < 2 must meet <u>both</u> of these requirements:

- -1.7 works because it is less than 2 and greater than -2, so |-1.7| < 2 is a true statement.
- -3 does not work, even though it is less than 2, because it is not greater than -2, so $\begin{vmatrix} -3 \end{vmatrix} < 2$ is not true.

Use the principle above to fill in the blanks for each question.

- 4. $|x| \leq 5$ means
- $x \leq 5$
- and

- 5. | x | < 250 means _____ and ____
- 6. |x+3| < 5 means _____ and ____
- 7. $|2x| 1 \le 9$ changes to _____ which means ____ and

Skill 4: Solve absolute value inequalities

To solve absolute value inequalities, solve the two inequalities that each represents.

For example, to solve $|y-2| \le 4$:

$$|y-2| \le 4$$
 means $y-2 \le 4$ and $y-2 \ge -4$
 $y \le 6$ and $y = 2 \ge -4$
 $y \le -2 \ge -4$

The solution set is $y \le 6$ and $y \ge -2$, which is the same as $-2 \le y \le 6$.

The graph of this solution set looks like:

Check
$$x = 5$$
: Is $|5 - 2| \le 4$?

Check
$$x = -3$$
: Is $\begin{vmatrix} -3 - 2 \end{vmatrix} \le 4$?
 $\begin{vmatrix} -5 \end{vmatrix} \le 4$ No.

$$\begin{vmatrix} 3 \end{vmatrix} \le 4$$
 Yes.
(x = 5 is in solution set.)

(x = -3 is not in solution set.)

A1 w7d3 More Abs Val Eqns.notebook

Use this principle to solve each absolute value inequality, graph the solution set, and on even problems check 2 values — one in the solution set and one not in the solution set.

8. $|2x+5| \le 5$

HW p 211: 23, 28, 33, 37, 43, 45

Solve each equation. If there is no solution, write no solution. Remember: 2 sticks = 2 problems

23.
$$3|v-3|=9$$

28.
$$3|x+2|+4=13$$

Solve and graph each inequality.

33.
$$|x| < 5$$

37.
$$|p-7| \leq 3$$

43.
$$|2v-1| \leq 9$$

45.
$$|2f+9| \le 13$$

