Alg 1 Week 15 Block Warm Up

Skill 6 and Skill 9: Graph the following three equations on the same graph. Let each line = 2 units.

a.
$$y = \frac{2}{3}x + 2$$

$$y = \frac{2}{3}x + 2$$
 $b.$ $y = \frac{4}{5}x$

c.
$$y = 10$$

Now use your graph to answer the following questions:

Where do the lines intersect?

Which line is in the "middle" when x is 10?

Which line is on the "top" when x is 20?

Skill 7: Write the equation of the line that passes through the given points in slope intercept form. (5,4) and (1,-2)

Skill 8. Write the equation of a line that passes through (8,-1) and is perpendicular to $y = \frac{4}{3}x - 1$

6-3 Solving Systems by Elimination

1. Solving a System by Multiplying One Equation

$$3x - 5y = 11$$
 1. eliminate x and solve 2. eliminate y

2. What is the solution of the system?

and solve

$$-2x + 15y = -32$$
$$7x - 5y = 17$$

Got It:
$$3x-2y=8$$

 $2x-2y=5$

3. Solving a System by Multiplying One Equation

The theater club sells a total of 101 tickets to its first play. A student ticket costs \$1. An adult ticket costs \$2.50. Total ticket sales are \$164. How many student tickets were sold?

Problem 4 Write a system to model the following situation:

Your school's talent show will feature 12 solo acts and 2 ensemble acts. The show will last 90 min. The 6 solo performers judged best will give a repeat performance at a second 60-min show, which will also feature the 2 ensemble acts. Each solo act lasts x minutes, and each ensemble act lasts y minutes.

notes

Alg 1 Block Wk 15 HW 6.3 A More Elimination

When using the elimination method, there are times when you are able to just add the two equations together or multiply one equation by a number to eliminate a variable. Other times, you must multiply <u>both</u> equations by different numbers to eliminate a variable. Today we will learn how to do that.

Example: Solve
$$2x - 7y = 3$$
$$5x - 4y = -6$$

To eliminate x, multiply the top equation by 5 and the bottom equation by

$$5(2x-7y=3)$$
This gives us the equations:
$$10x-35y=15$$

Now add the two equations to solve for y. + 10x - 35y = 15

y =

Substitute the in for y in either of the two original equations.

x =

The solution is (). check your answer in BOTH equations

notes: Elimination practice.

a.
$$8x + 3y = 4$$
 $-7x + 5y = -34$

b.
$$8x + 3y = -7$$

 $7x + 2y = -3$

check your answer in both equations!

Alg 1 Block Wk 15 HW 6.3 A More Elimination

When using the elimination method, there are times when you are able to just add the two equations together or multiply one equation by a number to eliminate a variable. Other times, you must multiply <u>both</u> equations by different numbers to eliminate a variable. Today we will learn how to do that.

Example: Solve
$$2x - 7y = 3$$
$$5x - 4y = -6$$

To eliminate x, multiply the top equation by 5 and the bottom equation by -2

$$5(2x-7y=3)$$
 This gives us the equations:
$$10x-35y=15$$
 $-10x+8y=12$

Now add the two equations to solve for y. +
$$\frac{10x - 35y = 15}{-10x + 8y = 12}$$
$$\frac{-27y = 27}{-27y = 27}$$

$$v = -1$$

Substitute the -1 in for y in either of the two original equations.

$$2x-7y = 3$$

$$2x-7(-1) = 3$$

$$2x+7 = 3$$

$$2x = -4$$

$$x = -2$$

The solution is (-2,-1).

Now it's your turn. Solve the following equations. Check your solution.

1.
$$7x - 5y = 11$$
$$-4x - 2y = -16$$

Check:

2.
$$4x - 2y = -18$$
$$-5x + 3y = 23$$

Check:

$$3x + 7y = 10$$
$$5x + 2y = 7$$

Check:

4.
$$-2x + 5y = -23$$
$$3x - 4y = 24$$

Check:

Multiply one equation to eliminate a variable. Check your answer in both equations.

5.
$$5x + 6y = -8$$

 $2x + 3y = -5$

6.
$$6x-2y = 10$$

 $3x - 7y = -19$