Alg 1 Block Week 12 Warm-up

Skill 5: Evaluate and Graph a Function.

Use a table of values to graph the equation.

$$y = 2x^2 + 4x - 6$$

X	Y
1	
0	
-1	
-2	
-3	

Skill 6: Graph a linear equation.

$$-5x + y = -5$$

Skill 7: Write the Equation of a Line passing through 2 points.

Parallel and Perpendicular Lines

block Day

Slopes of Parallel and Perpendicular Lines

Lines that are <u>parallel</u> have the same slope. Lines that are <u>perpendicular</u> have slopes that are negative reciprocals.

In other words, if a line has slope $\frac{a}{b}$, any line that is parallel to it will have slope $\frac{a}{b}$,

and any line that is perpendicular to it will have slope $-\frac{b}{a}$.

Find the slope of each line, then state whether each pair of lines is *parallel*, *perpendicular*, or *neither*. Use the points A(0, 3), B(2, -5), C(-5, 6), D(1, 0), E(-3, -2), and F(4, 5).

1. Line \overrightarrow{AE} and line \overrightarrow{DF} .

2. Line \overrightarrow{AC} and line \overrightarrow{AE} .

3. Line \overrightarrow{AD} and line \overrightarrow{CF} .

4. Line \overrightarrow{AC} and line \overrightarrow{DF} .

5. Line \overrightarrow{BE} and line \overrightarrow{AC} .

6. Line \overrightarrow{AF} and line \overrightarrow{ED} .

7. Line \overrightarrow{ED} and line \overrightarrow{BD} .

8. Line \overrightarrow{BE} and line \overrightarrow{AE} .

Notes 5-6: Parallel and Perpendicular Lines

Example 1: Write an equation for the line that is perpendicular to the given line and that passes through the given point.

Example 2: Write an equation for the line that is parallel to the given line and that passes through the given point.

Example 3: Write the equation of a line parallel to the line 2x - 3y = 3 that passes through the point (3, 7)

Example 4: Write the equation of a line perpendicular to the line -2x + y = 1 that passes through the point (4, -1)

A1 w12d3Parallel & Perp Lines 2017.notebook

Write an equation for the line that is perpendicular to the given line and that passes through the given point.

Examples:

Write an equation for the line that is parallel to the given line and that passes through the given point.

HW p 334: 27-30 + handout 5-6.B

27. Identify each pair of parallel lines. Then identify each pair of perpendicular lines.

line *a*:
$$y = 3x + 3$$

line *b*:
$$x = -1$$

line c:
$$y - 5 = \frac{1}{2}(x - 2)$$

line
$$d$$
: $y = 3$

line e:
$$y + 4 = -2(x + 6)$$

line
$$f: 9x - 3y = 5$$

Determine whether each statement is always, sometimes, or never true. Explain.

28. A horizontal line is parallel to the *x*-axis.

29. Two lines with positive slopes are parallel.

30. Two lines with the same slope and different y-intercepts are perpendicular.

5.6 B Wk 11 Block

Do circled problems on a separate piece of paper.

Homework

Find the slope of a line parallel to the graph of each equation.

1.
$$y = 4x + 2$$

2.
$$v = \frac{2}{7}x + \frac{1}{7}$$

3.
$$y = -9x - 13$$

4.
$$y = -\frac{1}{2}x + 1$$

5.
$$6x + 2y = 6$$

6.
$$y - 3 = 0$$

7.
$$-5x + 5y = 4$$

$$9. -x + 3y = 6$$

(10)
$$6x - 7y = 10$$

$$(11)x = -$$

$$12.) -3x - 5y = 0$$

Write an equation for the line that is perpendicular to the given line and that passes through the given point.

(13)
$$(6,4)$$
; $y = 3x - 2$

$$(14)$$
 $(-5,5)$; $y = -5x + 9$

(15)
$$(-1, -4)$$
; $y = \frac{1}{6}x + 1$

16.
$$(1,1)$$
; $y = -\frac{1}{4}x + 7$

17.
$$(12, -6)$$
; $y = 4x + 1$

18.
$$(0, -3)$$
; $y = -\frac{4}{3}x - 7$

Write an equation for the line that is parallel to the given line and that passes through the given point.

(3, 4);
$$y = 2x - 7$$

23.
$$(1,3); y = -4x + 5$$

24.
$$(4, -1)$$
; $y = x - 3$

25. (4,0);
$$y = \frac{3}{2}x + 9$$

(26)
$$(-8, -4)$$
; $y = -\frac{3}{4}x + 3$

$$(9, -7); -7x - 3y = 3$$

Tell whether the lines for each pair of equations are parallel, perpendicular, or neither.

$$(31) y = 3x - 8$$

$$32) \ 3x + 2y = -$$

33.
$$y = -\frac{5}{2}x + 11$$

34.
$$9x + 3y = 6$$

 $3x + 9y = 6$

$$y = -4$$

$$(36) x = 10$$