Name

The statement represents a claim. Write its complement and state which is H_0 and which is H_a . Identify which one is the claim.

1. $p \neq 0.18$ 2. $\mu \ge 32$

The alternative hypothesis is given with its graph. State the null hypothesis and sketch its graph.

3. $H_a: \mu > 2.5$

Write the null and alternative hypotheses for each statement. Identify which one is the claim. State whether you do a left-tailed, right-tailed, or two-tailed test for the hypothesis test.

- 4. The mean age of teachers when they retire in the state of California is at most 60 years.
- 5. Using the statement in problem #4, identify, in context, the type I and type II errors for the hypothesis test of this claim.

- 6. The mean age of teachers when they retire in the state of California is at most 60 years. If a hypothesis test is performed, how should you interpret a decision that fails to reject the null hypothesis?
 - a) There is not sufficient evidence to reject the claim $\mu \le 60$.
 - b) There is sufficient evidence to reject the claim $\mu \le 60$.
 - c) There is sufficient evidence to support the claim $\mu \leq 60$.
 - d) There is not sufficient evidence to support the claim $\mu \leq 60$.
- 7. Given $H_0: \mu \leq 345$, for which confidence interval should you reject H_0 ?
 - a) (340, 360)
 - b) (342, 358)
 - c) (350, 360)
- 8. The P-value for a hypothesis test is P = 0.0092. Do you reject or fail to reject H₀ when the level of significance is $\alpha = 0.01$?

Find the P-value for the hypothesis test with the standardized test statistic z. Decide whether to reject H_0 for the level of significance α .

9. Right-tailed test, z = 1.12, $\alpha = 0.10$ 10. Two-tailed test, z = 2.57, $\alpha = 0.01$

Find the critical value(s) and rejection region(s) for the type of z-test with level of significance α .

11. Two-tailed test, $\alpha = 0.05$

12. Left-tailed test, $\alpha = 0.03$

13. A consumer group claims that the mean acceleration time from 0 to 60 miles per hour for a sedan is 6.3 seconds. A random sample of 33 sedans has a mean acceleration time from 0 to 60 miles per hour of 7.2 seconds. Assume the population standard deviation is 2.5 seconds. If $\alpha = 0.05$, test the consumer group's claim. Use a P-value.

14. A fast food restaurant estimates that the mean sodium content in one of its breakfast sandwiches is no more than 920 milligrams. A random sample of 44 breakfast sandwiches has a mean sodium content of 925 milligrams. Assume the population standard deviation is 18 milligrams. Use $\alpha = 0.10$ and rejection regions.