Chapter 6.3

Confidence Intervals for Population Proportions

SITUATION 3: You have a situation with a binomial probability distribution.

In other words, you want to estimate the proportion or percentage of success from a population instead of a mean (average).

For Example: What percentage of voters support the Libertarian Candidate for governor?

PIS the population proportion Recall:

Binomial Probability Distribution

- 1. Fixed number of trials, n
- 2. Two possible outcomes, success & failure
- 3. Probability of success = p
- 4. Probability of failure = 1 p
- 5. Looking for the Probability of x successes out of n trials P(n,x)

You can *assume* that for a large enough number of trials, the binomial distribution *is close enough* to a normal distribution and can use this information to estimate the value of p.

POINT ESTIMATES FOR "P"

$$\hat{p} = \frac{x}{n} \qquad \hat{q} = 1 - \hat{p}$$

Where

x = number of successes from the sample n = the number of trials = the sample size

Conditions: To approximate to a normal distribution the following MUST be true:

$$n\hat{p} \geqslant 5$$
 and $n\hat{q} \geqslant 5$

Pread phat (sample proportion)
q read q-hat (sample proportions
) failures)

Example 1: Let p be the population proportion for the situation. Find the point estimate of p and q. Then verify that $n\hat{p} > 5$ and $n\hat{q} > 5$.

a) In a survey of 250 college seniors, 170 report that they wish that they had taken more foreign language courses.

$$\hat{p} = \frac{170}{250} = \frac{17}{250} \text{ or } .68$$

$$250(.68) = 170 > 5$$

$$250(.32) = 80 > 5$$

$$\hat{q} = 1 - \frac{17}{15} = \frac{8}{25} \text{ or } 1 - .68 = .32$$

$$yes$$

b) In a survey of 400 new parents, 396 report they received an informational packet about the La Leche League support group form their labor and delivery nurses.

$$\beta = \frac{396}{400} = .99$$

$$\hat{q} = 1 - .99 = .01$$

cannot use standard vormal clist. 7 n.p = 800(, 75)=600 >5 So we can dist.

Example 2: Suppose that 800 students were selected at random from a student body and given shots to prevent a certain type of flu. After a waiting period it was discovered that 600 of the students did not get the flu. Construct a 98% confidence interval for the population proportion. Interpret the results.

$$6 = \frac{600}{800} = .75 = \frac{1-.98}{2} = .0100 = .0100 = .0100$$

Confidence Interval for "P"
$$\hat{p}-E where $E pprox z_c \sqrt{\frac{\hat{p}\hat{q}}{n}}$$$

$$\hat{q} = 1 - .75 = .25$$

Example 3: A random sample of 188 books purchased at a local bookstore showed that 66 of the books were murder mysteries. Let p represent the proportion of books sold by this store that are murder mysteries. Construct a 90% confidence interval for p and interpret the results.

confidence interval for p and interpret the results.
$$P = \frac{66}{188} = .35 \qquad 129^{\circ} = \frac{1}{2} = .0500 \qquad E = 1.645 \qquad \frac{35(.65)}{188} = .057$$

$$Q = 1-.35 = .65 \qquad 7 = 1.645 \qquad .35 = .057 < P < .35 + .057$$

$$188(.35) = 165.825 \sim 188(.65) = 122.7225 \sim .293 < P < .407$$

$$With 90% confidence, you can say the pop. proportion of sold murder mystery books is between 29.37s and 40.7%.

Example 4: Use the following confidence interval to find the margin of error and the sample proportion. (5.361,10.483).$$

$$\varphi = \frac{5.361 + 10.483}{2} = 7.922$$

$$E = 7.922 - 5.361 = 2.561$$

MINIMUM SAMPLE SIZE FOR ESTIMATING "P"

Example 5:

You want to do a study on the percentage of people who lie to their dentists about flossing. You wish to estimate your percentage with 95% accuracy within 5% of the population 7 use p = .5 g= .5 proportion.

a) No preliminary estimate is available. Find the minimum 5=.05 sample size needed.

b) A commercial for Listerine claims that 1 out of every 5 people lie about flossing to their dentist (In other words, 20% of people lie about flossing). Find the minimum

$$\vec{q} = \frac{1}{5} = .2$$
 $n = (.2)(.8)(\frac{1.96}{.05}) = 245.811$

FINDING A MINIMUM SAMPLE SIZE TO ESTIMATE p

Given a c-confidence level and a margin of error E, the minimum sample size n needed to estimate the population proportion p is

$$n = \hat{p}\hat{q} \left(\frac{z_c}{E}\right)^2$$

If n is not a whole number, then round n up to the next whole number. Also, note that this formula assumes that you have preliminary estimates of p and q. If not, use $\hat{p} = 0.5 \text{ and } \hat{q} = 0.5.$

$$n = (0.5)(0.5) \left(\frac{Z_c}{E}\right)^2$$

n=2461