Chapter 2
Functions and Their Graphs

Section 2.1

1. \((-1, 3)\)

2. \(3(-2)^2 - 5(-2) + \frac{1}{(-2)} = 3(4) - 5(-2) - \frac{1}{2}\)
\(= 12 + 10 - \frac{1}{2}\)
\(= \frac{43}{2} \text{ or } 21 \frac{1}{2} \text{ or } 21.5\)

3. We must not allow the denominator to be 0.
\(x + 4 \neq 0 \Rightarrow x \neq -4 \); Domain: \(\{x \mid x \neq -4\}\).

4. \(3 - 2x > 5\)
\(-2x > 2\)
\(x < -1\)
Solution set: \(\{x \mid x < -1\} \) or \((-\infty, -1)\)

5. independent; dependent

6. range

7. \([0, 5]\)
We need the intersection of the intervals \([0, 7]\) and \([-2, 5]\). That is, domain of \(f \cap \text{domain of } g\).

8. \(\neq ; f, g\)

9. \((g - f)(x) \) or \(g(x) - f(x)\)

10. False; every function is a relation, but not every relation is a function. For example, the relation \(x^2 + y^2 = 1\) is not a function.

11. True

12. True

13. False; if the domain is not specified, we assume it is the largest set of real numbers for which the value of \(f\) is a real number.

14. False; the domain of \(f(x) = \frac{x^2 - 4}{x}\) is \(\{x \mid x \neq 0\}\).

15. Function
Domain: \{Elvis, Colleen, Kaleigh, Marissa\}
Range: \{Jan. 8, Mar. 15, Sept. 17\}

16. Not a function

17. Not a function

18. Function
Domain: \{Less than 9th grade, 9th-12th grade, High School Graduate, Some College, College Graduate\}
Range: \{$18,120, $23,251, $36,055, $45,810, $67,165\}

19. Not a function

20. Function
Domain: \{–2, –1, 3, 4\}
Range: \{3, 5, 7, 12\}

21. Function
Domain: \{1, 2, 3, 4\}
Range: \{3\}

22. Function
Domain: \{0, 1, 2, 3\}
Range: \{–2, 3, 7\}

23. Not a function

24. Not a function

25. Function
Domain: \{–2, –1, 0, 1\}
Range: \{0, 1, 4\}

26. Function
Domain: \{–2, –1, 0, 1\}
Range: \{3, 4, 16\}
27. Graph $y = x^2$. The graph passes the vertical line test. Thus, the equation represents a function.

28. Graph $y = x^3$. The graph passes the vertical line test. Thus, the equation represents a function.

29. Graph $y = \frac{1}{x}$. The graph passes the vertical line test. Thus, the equation represents a function.

30. Graph $y = |x|$. The graph passes the vertical line test. Thus, the equation represents a function.

31. $y^2 = 4 - x^2$

Solve for y: $y = \pm \sqrt{4 - x^2}$

For $x = 0$, $y = \pm 2$. Thus, $(0, 2)$ and $(0, -2)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

32. $y = \pm \sqrt{1 - 2x}$

For $x = 0$, $y = \pm 1$. Thus, $(0, 1)$ and $(0, -1)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

33. $x = y^2$

Solve for y: $y = \pm \sqrt{x}$

For $x = 1$, $y = \pm 1$. Thus, $(1, 1)$ and $(1, -1)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

34. $x + y^2 = 1$

Solve for y: $y = \pm \sqrt{1 - x}$

For $x = 0$, $y = \pm 1$. Thus, $(0, 1)$ and $(0, -1)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

35. Graph $y = 2x^2 - 3x + 4$. The graph passes the vertical line test. Thus, the equation represents a function.

36. Graph $y = \frac{3x - 1}{x + 2}$. The graph passes the vertical line test. Thus, the equation represents a function.

37. $2x^2 + 3y^2 = 1$

Solve for y: $2x^2 + 3y^2 = 1$

$3y^2 = 1 - 2x^2$

$y^2 = \frac{1 - 2x^2}{3}$

$y = \pm \frac{\sqrt{1 - 2x^2}}{\sqrt{3}}$

For $x = 0$, $y = \pm \frac{1}{\sqrt{3}}$. Thus, $\left(0, \frac{1}{\sqrt{3}}\right)$ and $\left(0, -\frac{1}{\sqrt{3}}\right)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.
38. \(x^2 - 4y^2 = 1 \)

Solve for \(y \):

\[
4y^2 = x^2 - 1
\]
\[
y^2 = \frac{x^2 - 1}{4}
\]
\[
y = \pm \sqrt[2]{\frac{x^2 - 1}{4}}
\]

For \(x = \sqrt{2}, \ y = \pm \frac{1}{2} \). Thus, \(\left(\sqrt{2}, \frac{1}{2} \right) \) and \(\left(\sqrt{2}, -\frac{1}{2} \right) \) are on the graph. This is not a function, since a distinct \(x \)-value corresponds to two different \(y \)-values.

39. \(f(x) = 3x^2 + 2x - 4 \)

a. \(f(0) = 3(0)^2 + 2(0) - 4 = -4 \)

b. \(f(1) = 3(1)^2 + 2(1) - 4 = 3 + 2 - 4 = 1 \)

c. \(f(-1) = 3(-1)^2 + 2(-1) - 4 = 3 - 2 - 4 = -3 \)

d. \(f(-x) = 3(-x)^2 + 2(-x) - 4 = 3x^2 - 2x - 4 \)

e. \(-f(x) = -(3x^2 + 2x - 4) = -3x^2 - 2x + 4 \)

f. \(f(x+1) = 3(x+1)^2 + 2(x+1) - 4 \)
\[
= 3x^2 + 6x + 3 + 2x + 2 - 4
\]
\[
= 3x^2 + 8x + 1
\]

g. \(f(2x) = 3(2x)^2 + 2(2x) - 4 = 12x^2 + 4x - 4 \)

h. \(f(x+h) = 3(x+h)^2 + 2(x+h) - 4 \)
\[
= 3x^2 + 6xh + 3 + 2x + 2h - 4
\]
\[
= 3x^2 + 6xh + 3h^2 + 2x + 2h - 4
\]

40. \(f(x) = -2x^2 + x - 1 \)

a. \(f(0) = -2(0)^2 + 0 - 1 = -1 \)

b. \(f(1) = -2(1)^2 + 1 - 1 = -2 \)

c. \(f(-1) = -2(-1)^2 + (-1) - 1 = -4 \)

d. \(f(-x) = -2(-x)^2 + (-x) - 1 = -2x^2 - x - 1 \)

e. \(-f(x) = -(2x^2 + x - 1) = 2x^2 - x + 1 \)

f. \(f(x+1) = -2(x+1)^2 + (x+1) - 1 \)
\[
= -2(x^2 + 2x + 1) + x + 1 - 1
\]
\[
= -2x^2 - 4x - 2 + x
\]
\[
= -2x^2 - 3x - 2
\]

g. \(f(2x) = -2(2x)^2 + (2x) - 1 = -8x^2 + 2x - 1 \)

h. \(f(x+h) = -2(x+h)^2 + (x+h) - 1 \)
\[
= -2(x^2 + 2xh + h^2) + x + h - 1
\]
\[
= -2x^2 - 4xh - 2h^2 + x + h - 1
\]

41. \(f(x) = \frac{x}{x^2 + 1} \)

a. \(f(0) = \frac{0}{0^2 + 1} = 0 = 0 \)

b. \(f(1) = \frac{1}{1^2 + 1} = \frac{1}{2} \)

c. \(f(-1) = \frac{-1}{(-1)^2 + 1} = \frac{-1}{1 + 1} = -\frac{1}{2} \)

d. \(f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} \)

e. \(-f(x) = -\left(\frac{x}{x^2 + 1} \right) = -\frac{x}{x^2 + 1} \)

f. \(f(x+1) = \frac{x+1}{(x+1)^2 + 1} \)
\[
= \frac{x+1}{x^2 + 2x + 1 + 1}
\]
\[
= \frac{x+1}{x^2 + 2x + 2}
\]

g. \(f(2x) = \frac{2x}{(2x)^2 + 1} = \frac{2x}{4x^2 + 1} \)

h. \(f(x+h) = \frac{x+h}{(x+h)^2 + 1} = \frac{x+h}{x^2 + 2xh + h^2 + 1} \)
42. \(f(x) = \frac{x^2 - 1}{x + 4} \)

a. \(f(0) = \frac{0^2 - 1}{0 + 4} = \frac{-1}{4} = \frac{-1}{4} \)

b. \(f(1) = \frac{1^2 - 1}{1 + 4} = \frac{0}{5} = 0 \)

c. \(f(-1) = \frac{(-1)^2 - 1}{-1 + 4} = \frac{0}{3} = 0 \)

d. \(f(-x) = \frac{(-x)^2 - 1}{-x + 4} = \frac{x^2 - 1}{-x + 4} \)

e. \(-f(x) = -\left(\frac{x^2 - 1}{x + 4} \right) = \frac{-x^2 + 1}{x + 4} \)

f. \(f(x+1) = \frac{(x+1)^2 - 1}{(x+1) + 4} = \frac{x^2 + 2x + 1 - 1}{x + 5} = \frac{x^2 + 2x}{x + 5} \)

g. \(f(2x) = \frac{(2x)^2 - 1}{2x + 4} = \frac{4x^2 - 1}{2x + 4} \)

h. \(f(x+h) = \frac{(x+h)^2 - 1}{(x+h) + 4} = \frac{x^2 + 2xh + h^2 - 1}{x + h + 4} \)

43. \(f(x) = |x| + 4 \)

a. \(f(0) = |0| + 4 = 0 + 4 = 4 \)

b. \(f(1) = |1| + 4 = 1 + 4 = 5 \)

c. \(f(-1) = |-1| + 4 = 1 + 4 = 5 \)

d. \(f(-x) = |-x| + 4 = |x| + 4 \)

e. \(-f(x) = -(|x| + 4) = -|x| - 4 \)

f. \(f(x+1) = |x+1| + 4 \)

g. \(f(2x) = |2x| + 4 = 2|x| + 4 \)

h. \(f(x+h) = |x+h| + 4 \)

44. \(f(x) = \sqrt{x^2 + x} \)

a. \(f(0) = \sqrt{0^2 + 0} = \sqrt{0} = 0 \)

b. \(f(1) = \sqrt{1^2 + 1} = \sqrt{2} \)

c. \(f(-1) = \sqrt{(-1)^2 + (-1)} = \sqrt{1 - 1} = \sqrt{0} = 0 \)

d. \(f(-x) = \sqrt{(-x)^2 + (-x)} = \sqrt{x^2 - x} \)

e. \(-f(x) = -\left(\sqrt{x^2 + x} \right) = -\sqrt{x^2 + x} \)

f. \(f(x+1) = \sqrt{(x+1)^2 + (x+1)} = \sqrt{x^2 + 2x + 1 + x + 1} = \sqrt{x^2 + 3x + 2} \)

g. \(f(2x) = \sqrt{(2x)^2 + 2x} = \sqrt{4x^2 + 2x} \)

h. \(f(x+h) = \sqrt{(x+h)^2 + (x+h)} = \sqrt{x^2 + 2xh + h^2 + x + h} \)

45. \(f(x) = \frac{2x+1}{3x-5} \)

a. \(f(0) = \frac{2(0)+1}{3(0)-5} = \frac{0+1}{0-5} = \frac{1}{-5} = \frac{-1}{5} \)

b. \(f(1) = \frac{2(1)+1}{3(1)-5} = \frac{2+1}{3-5} = \frac{3}{-2} = \frac{-3}{2} \)

c. \(f(-1) = \frac{2(-1)+1}{3(-1)-5} = \frac{-2+1}{-3-5} = \frac{-1}{-8} = \frac{1}{8} \)

d. \(f(-x) = \frac{2(-x)+1}{3(-x)-5} = \frac{-2x+1}{-3x-5} = \frac{2x-1}{3x+5} \)

e. \(-f(x) = -\left(\frac{2x+1}{3x-5} \right) = \frac{-2x-1}{3x-5} \)

f. \(f(x+1) = \frac{2(x+1)+1}{3(x+1)-5} = \frac{2x+3}{3x+3-5} = \frac{2x+3}{3x-2} \)

g. \(f(2x) = \frac{2(2x)+1}{3(2x)-5} = \frac{4x+1}{6x-5} \)

h. \(f(x+h) = \frac{2(x+h)+1}{3(x+h)-5} = \frac{2x+2h+1}{3x+3h-5} \)
46. \(f(x) = 1 - \frac{1}{(x+2)^2} \)

a. \(f(0) = 1 - \frac{1}{(0+2)^2} = 1 - \frac{1}{4} = \frac{3}{4} \)

b. \(f(1) = 1 - \frac{1}{(1+2)^2} = 1 - \frac{1}{9} = \frac{8}{9} \)

c. \(f(-1) = 1 - \frac{1}{(-1+2)^2} = 1 - \frac{1}{1} = 0 \)

d. \(f(-x) = 1 - \frac{1}{(-x+2)^2} = 1 - \frac{1}{(2-x)^2} \)

e. \(-f(x) = -\left(1 - \frac{1}{(x+2)^2}\right) = \frac{1}{(x+2)^2} - 1 \)

f. \(f(x+1) = 1 - \frac{1}{(x+1+2)^2} = 1 - \frac{1}{(x+3)^2} \)

g. \(f(2x) = 1 - \frac{1}{(2x+2)^2} = 1 - \frac{1}{4(x+1)^2} \)

h. \(f(x+h) = 1 - \frac{1}{(x+h+2)^2} \)

47. \(f(x) = -5x + 4 \)

Domain: \(\{x \mid x \text{ is any real number}\} \)

48. \(f(x) = x^2 + 2 \)

Domain: \(\{x \mid x \text{ is any real number}\} \)

49. \(f(x) = \frac{x}{x^2 + 1} \)

Domain: \(\{x \mid x \text{ is any real number}\} \)

50. \(f(x) = \frac{x^2}{x^2 + 1} \)

Domain: \(\{x \mid x \text{ is any real number}\} \)

51. \(g(x) = \frac{x}{x^2 - 16} \)

\(x^2 - 16 \neq 0 \)

\(x^2 \neq 16 \Rightarrow x \neq \pm 4 \)

Domain: \(\{x \mid x \neq -4, x \neq 4\} \)

52. \(h(x) = \frac{2x}{x^2 - 4} \)

\(x^2 - 4 \neq 0 \)

\(x^2 \neq 4 \Rightarrow x \neq \pm 2 \)

Domain: \(\{x \mid x \neq -2, x \neq 2\} \)

53. \(F(x) = \frac{x - 2}{x^3 + x} \)

\(x^3 + x \neq 0 \)

\(x(x^2 + 1) \neq 0 \)

\(x \neq 0, x^2 \neq -1 \)

Domain: \(\{x \mid x \neq 0\} \)

54. \(G(x) = \frac{x + 4}{x^3 - 4x} \)

\(x^3 - 4x \neq 0 \)

\(x(x^2 - 4) \neq 0 \)

\(x \neq 0, x^2 \neq 4 \)

\(x \neq 0, x \neq \pm 2 \)

Domain: \(\{x \mid x \neq -2, x \neq 0, x \neq 2\} \)

55. \(h(x) = \sqrt{3x - 12} \)

\(3x - 12 \geq 0 \)

\(3x \geq 12 \)

\(x \geq 4 \)

Domain: \(\{x \mid x \geq 4\} \)

56. \(G(x) = \sqrt{1 - x} \)

\(1 - x \geq 0 \)

\(-x \geq -1 \)

\(x \leq 1 \)

Domain: \(\{x \mid x \leq 1\} \)

57. \(f(x) = \sqrt{\frac{4}{x - 9}} \)

\(x - 9 > 0 \)

\(x > 9 \)

Domain: \(\{x \mid x > 9\} \)
Chapter 2: Functions and Their Graphs

58. \(f(x) = \frac{x}{\sqrt{x-4}} \)
 \(x - 4 > 0 \)
 \(x > 4 \)
 Domain: \(\{ x \mid x > 4 \} \)

59. \(p(x) = \sqrt{\frac{2}{x-1}} = \frac{\sqrt{2}}{\sqrt{x-1}} \)
 \(x - 1 > 0 \)
 \(x > 1 \)
 Domain: \(\{ x \mid x > 1 \} \)

60. \(q(x) = \sqrt{-x-2} \)
 \(-x - 2 \geq 0 \)
 \(-x \geq 2 \)
 \(x \leq -2 \)
 Domain: \(\{ x \mid x \leq -2 \} \)

61. \(P(t) = \sqrt{\frac{t-4}{3t-21}} \)
 \(t - 4 \geq 0 \)
 \(t \geq 4 \)
 Also \(3t - 21 \neq 0 \)
 \(3t - 21 \neq 0 \)
 \(3t \neq 21 \)
 \(t \neq 7 \)
 Domain: \(\{ t \mid t \geq 4, t \neq 7 \} \)

62. \(h(z) = \frac{\sqrt{z+3}}{z-2} \)
 \(z + 3 \geq 0 \)
 \(z \geq -3 \)
 Also \(z - 2 \neq 0 \)
 \(z \neq 2 \)
 Domain: \(\{ z \mid z \geq -3, z \neq 2 \} \)

63. \(f(x) = 3x + 4 \quad g(x) = 2x - 3 \)
 a. \((f + g)(x) = 3x + 4 + 2x - 3 = 5x + 1 \)
 Domain: \(\{ x \mid x \text{ is any real number} \} \)
 b. \((f - g)(x) = (3x + 4) - (2x - 3) \)
 \(= 3x + 4 - 2x + 3 \)
 \(= x + 7 \)
 Domain: \(\{ x \mid x \text{ is any real number} \} \)
 c. \((f \cdot g)(x) = (3x + 4)(2x - 3) \)
 \(= 6x^2 - 9x + 8x - 12 \)
 \(= 6x^2 - x - 12 \)
 Domain: \(\{ x \mid x \text{ is any real number} \} \)
 d. \(\left(\frac{f}{g} \right)(x) = \frac{3x + 4}{2x - 3} \)
 \(2x - 3 \neq 0 \Rightarrow 2x \neq 3 \Rightarrow x \neq \frac{3}{2} \)
 Domain: \(\{ x \mid x \neq \frac{3}{2} \} \)

64. \(f(x) = 2x + 1 \quad g(x) = 3x - 2 \)
 a. \((f + g)(x) = 2x + 1 + 3x - 2 = 5x - 1 \)
 Domain: \(\{ x \mid x \text{ is any real number} \} \)
 b. \((f - g)(x) = (2x + 1) - (3x - 2) \)
 \(= 2x + 1 - 3x + 2 \)
 \(= -x + 3 \)
 Domain: \(\{ x \mid x \text{ is any real number} \} \)
 c. \((f \cdot g)(x) = (2x + 1)(3x - 2) \)
 \(= 6x^2 - 4x + 3x - 2 \)
 \(= 6x^2 - x - 2 \)
 Domain: \(\{ x \mid x \text{ is any real number} \} \)
 d. \(\left(\frac{f}{g} \right)(x) = \frac{2x + 1}{3x - 2} \)
 \(3x - 2 \neq 0 \Rightarrow x \neq \frac{2}{3} \)
 Domain: \(\{ x \mid x \neq \frac{2}{3} \} \)

Copyright © 2013 Pearson Education, Inc.
Section 2.1: Functions

e. \((f + g)(3) = 5(3)^2 - 1 = 15 - 1 = 14\)
f. \((f - g)(4) = -4 + 3 = -1\)
g. \((f \cdot g)(2) = 6(2)^2 - 2 - 2 \quad \Rightarrow \quad \text{Domain: } \{x \mid x \text{ is any real number}\}\)
h. \(f \left(\frac{g}{f}\right)(1) = \frac{2(1)+1}{3(1)-2} = \frac{2+1}{3-2} = \frac{3}{1} = 3\)

65. \(f(x) = x - 1 \quad g(x) = 2x^2\)
a. \((f + g)(x) = x - 1 + 2x^2 = 2x^2 + x - 1 \quad \text{Domain: } \{x \mid x \text{ is any real number}\}\)
b. \((f - g)(x) = (x - 1) - (2x^2) = x - 1 - 2x^2 = -2x^2 + x - 1 \quad \text{Domain: } \{x \mid x \text{ is any real number}\}\)
c. \((f \cdot g)(x) = (x - 1)(2x^2) = 2x^3 - 2x^2 \quad \text{Domain: } \{x \mid x \text{ is any real number}\}\)
d. \(\left(\frac{f}{g}\right)(x) = \frac{x - 1}{2x^2} \quad \text{Domain: } \{x \mid x \neq 0\}\)

66. \(f(x) = 2x^2 + 3 \quad g(x) = 4x^3 + 1\)
a. \((f + g)(x) = 2x^2 + 3 + 4x^3 + 1 = 4x^3 + 2x^2 + 4 \quad \text{Domain: } \{x \mid x \text{ is any real number}\}\)
b. \((f - g)(x) = (2x^2 + 3) - (4x^3 + 1) = 2x^2 + 3 - 4x^3 - 1 = -4x^3 + 2x^2 + 2 \quad \text{Domain: } \{x \mid x \text{ is any real number}\}\)
c. \((f \cdot g)(x) = (2x^2 + 3)(4x^3 + 1) = 8x^5 + 12x^3 + 2x^2 + 3 \quad \text{Domain: } \{x \mid x \text{ is any real number}\}\)
d. \(\left(\frac{f}{g}\right)(x) = \frac{2x^2 + 3}{4x^3 + 1} \quad 4x^3 + 1 \neq 0 \quad 4x^3 \neq -1 \quad x^3 \neq -\frac{1}{4} \Rightarrow x \neq \frac{1}{\sqrt[3]{4}} = \frac{\sqrt[3]{2}}{2} \quad \text{Domain: } \left\{x \mid x \neq \frac{\sqrt[3]{2}}{2}\right\}\)

e. \((f + g)(3) = 4(3)^3 + 2(3)^2 + 4 = 4(27) + 2(9) + 4 = 108 + 18 + 4 = 130\)
f. \((f - g)(4) = -4(4)^3 + 2(4)^2 + 2 = -4(64) + 2(16) + 2 = -256 + 32 + 2 = -222\)
g. \((f \cdot g)(2) = 8(2)^3 + 12(2)^3 + 2(2)^3 + 3 = 8(32) + 12(8) + 2(4) + 3 = 256 + 96 + 8 + 3 = 363\)
h. \(\left(\frac{f}{g}\right)(1) = \frac{2(1)^2 + 3}{4(1)^3 + 1} = \frac{2(1) + 3}{4(1) + 1} = \frac{2 + 3}{4 + 1} = \frac{5}{5} = 1\)

67. \(f(x) = \sqrt{x} \quad g(x) = 3x - 5\)
a. \((f + g)(x) = \sqrt{x} + 3x - 5 \quad \text{Domain: } \{x \mid x \geq 0\}\)
Chapter 2: Functions and Their Graphs

b. \((f - g)(x) = \sqrt{x} - (3x - 5) = \sqrt{x} - 3x + 5\)
 Domain: \(\{x \mid x \geq 0\}\).

c. \((f \cdot g)(x) = \sqrt{x}(3x - 5) = 3x\sqrt{x} - 5\sqrt{x}\)
 Domain: \(\{x \mid x \geq 0\}\).

d. \(\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{3x - 5}\)
 \(x \geq 0\) and \(3x - 5 \neq 0\)
 \(3x \neq 5 \Rightarrow x \neq \frac{5}{3}\)
 Domain: \(\{x \mid x \geq 0\text{ and } x \neq \frac{5}{3}\}\).

e. \((f + g)(3) = \sqrt{3} + 3(3) - 5 = \sqrt{3} + 9 - 5 = \sqrt{3} + 4\)

f. \((f - g)(4) = \sqrt{4} - 3(4) + 5 = 2 - 12 + 5 = -5\)

g. \((f \cdot g)(2) = 3(2)\sqrt{2} - 5\sqrt{2} = 6\sqrt{2} - 5\sqrt{2} = \sqrt{2}\)

h. \(\left(\frac{f}{g}\right)(1) = \frac{\sqrt{1}}{3(1) - 5} = \frac{1}{3} - \frac{5}{2} = \frac{1}{3} = \frac{1}{3}\)

68. \(f(x) = |x| \quad g(x) = x\)

 a. \((f + g)(x) = |x| + x\)
 Domain: \(\{x \mid x\text{ is any real number}\}\).

 b. \((f - g)(x) = |x| - x\)
 Domain: \(\{x \mid x\text{ is any real number}\}\).

 c. \((f \cdot g)(x) = |x| \cdot |x| = |x|^2\)
 Domain: \(\{x \mid x\text{ is any real number}\}\).

 d. \(\left(\frac{f}{g}\right)(x) = \frac{|x|}{x}\)
 Domain: \(\{x \mid x \neq 0\}\).

 e. \((f + g)(3) = |3| + 3 = 3 + 3 = 6\)

 f. \((f - g)(4) = |4| - 4 = 4 - 4 = 0\)

 g. \((f \cdot g)(2) = 2 \cdot 2 = 4\)

69. \(f(x) = 1 + \frac{1}{x} \quad g(x) = \frac{1}{x}\)

 a. \((f + g)(x) = 1 + \frac{1}{x} + \frac{1}{x} = 1 + \frac{2}{x}\)
 Domain: \(\{x \mid x \neq 0\}\).

 b. \((f - g)(x) = 1 + \frac{1}{x} - \frac{1}{x} = 1\)
 Domain: \(\{x \mid x \neq 0\}\).

 c. \((f \cdot g)(x) = \left(1 + \frac{1}{x}\right) \frac{1}{x} = \frac{1}{x} + \frac{1}{x^2}\)
 Domain: \(\{x \mid x \neq 0\}\).

 d. \(\left(\frac{f}{g}\right)(x) = \frac{1 + \frac{1}{x}}{\frac{1}{x}} = \frac{x + 1}{1} = \frac{x+1}{x} = x + 1\)
 Domain: \(\{x \mid x \neq 0\}\).

70. \(f(x) = \sqrt{x - 1} \quad g(x) = \sqrt{4 - x}\)

 a. \((f + g)(x) = \sqrt{x - 1} + \sqrt{4 - x}\)
 \(x - 1 \geq 0\) and \(4 - x \geq 0\)
 \(x \geq 1\) and \(-x \geq -4\)
 \(x \leq 4\)
 Domain: \(\{x \mid 1 \leq x \leq 4\}\).

 b. \((f - g)(x) = \sqrt{x - 1} - \sqrt{4 - x}\)
 \(x - 1 \geq 0\) and \(4 - x \geq 0\)
 \(x \geq 1\) and \(-x \geq -4\)
 \(x \leq 4\)
 Domain: \(\{x \mid 1 \leq x \leq 4\}\).
c. \((f \cdot g)(x) = (\sqrt{x-1})(\sqrt{4-x}) \)
\[=\sqrt{-x^2 + 5x - 4} \]
\[x-1 \geq 0 \text{ and } 4-x \geq 0 \]
\[x \geq 1 \text{ and } -x \geq -4 \]
\[x \leq 4 \]
Domain: \(\{x \mid 1 \leq x \leq 4 \} \).

d. \(\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x-1}}{\sqrt{4-x}} = \sqrt{\frac{x-1}{4-x}} \)
\[x-1 \geq 0 \text{ and } 4-x > 0 \]
\[x \geq 1 \text{ and } x > -4 \]
\[x < 4 \]
Domain: \(\{x \mid 1 \leq x < 4 \} \).

e. \((f + g)(3) = \sqrt{3-1} + \sqrt{4-3} \)
\[= \sqrt{2} + \sqrt{1} = \sqrt{2} + 1 \]
f. \((f - g)(4) = \sqrt{4-1} - \sqrt{4-4} \)
\[= \sqrt{3} - \sqrt{0} = \sqrt{3} - 0 = \sqrt{3} \]
g. \((f \cdot g)(2) = \sqrt{(-2)^2 + 5(2) - 4} \)
\[= \sqrt{4+10-4} = \sqrt{2} \]
h. \(\left(\frac{f}{g}\right)(1) = \frac{1-1}{\sqrt{4-1}} = \frac{0}{\sqrt{3}} = 0 \)

71. \(f(x) = \frac{2x+3}{3x-2} \quad g(x) = \frac{4x}{3x-2} \)

a. \((f + g)(x) = \frac{2x+3}{3x-2} + \frac{4x}{3x-2} \)
\[= \frac{2x+3+4x}{3x-2} = \frac{6x+3}{3x-2} \]
\[3x-2 \neq 0 \]
\[3x-2 \Rightarrow x \neq \frac{2}{3} \]
Domain: \(\{x \mid x \neq \frac{2}{3} \} \).

b. \((f - g)(x) = \frac{2x+3}{3x-2} - \frac{4x}{3x-2} \)
\[= \frac{2x+3-4x}{3x-2} = \frac{-2x+3}{3x-2} \]
\[3x-2 \neq 0 \]
\[3x-2 \Rightarrow x \neq \frac{2}{3} \]
Domain: \(\{x \mid x \neq \frac{2}{3} \} \).

c. \((f \cdot g)(x) = \left(\frac{2x+3}{3x-2}\right) \left(\frac{4x}{3x-2}\right) = \frac{8x^2 + 12x}{(3x-2)^2} \)
\[3x-2 \neq 0 \]
\[3x-2 \Rightarrow x \neq \frac{2}{3} \]
Domain: \(\{x \mid x \neq \frac{2}{3} \} \).

d. \(\left(\frac{f}{g}\right)(x) = \frac{2x+3}{3x-2} \cdot \frac{3x-2}{4x} = \frac{2x+3}{4x} \)
\[3x-2 \neq 0 \text{ and } x \neq 0 \]
\[3x-2 \Rightarrow x \neq \frac{2}{3} \]
\[x \neq \frac{2}{3} \]
Domain: \(\{x \mid x \neq \frac{2}{3} \text{ and } x \neq 0 \} \).

e. \((f + g)(3) = \frac{6(3)+3}{3(3)-2} = \frac{18+3}{9-2} = \frac{21}{7} = 3 \)
f. \((f - g)(4) = \frac{-2(4)+3}{3(4)-2} = \frac{-8+3}{12-2} = \frac{-5}{10} = -\frac{1}{2} \)
g. \((f \cdot g)(2) = \frac{8(2)^2 + 12(2)}{(3(2)-2)^2} \)
\[= \frac{8(4)+24}{(6-2)^2} = \frac{24+24}{(4)^2} = \frac{56}{16} = \frac{7}{2} \]
h. \(\left(\frac{f}{g}\right)(1) = \frac{2(1)+3}{4(1)} = \frac{2+3}{4} = \frac{5}{4} \)

Copyright © 2013 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs

72. \(f(x) = \sqrt{x+1} \quad g(x) = \frac{2}{x} \)

a. \((f + g)(x) = \sqrt{x+1} + \frac{2}{x} \)
\(x + 1 \geq 0 \) and \(x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{ and } x \neq 0\} \).

b. \((f - g)(x) = \sqrt{x+1} - \frac{2}{x} \)
\(x + 1 \geq 0 \) and \(x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{ and } x \neq 0\} \).

c. \((f \cdot g)(x) = \sqrt{x+1} \cdot \frac{2}{x} = \frac{2 \sqrt{x+1}}{x} \)
\(x + 1 \geq 0 \) and \(x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{ and } x \neq 0\} \).

d. \(\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x+1}}{x} = \frac{2 \sqrt{x+1}}{2x} \)
\(x + 1 \geq 0 \) and \(x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{ and } x \neq 0\} \).

e. \((f + g)(3) = \sqrt{3+1} + \frac{2}{3} = \sqrt{4} + \frac{2}{3} = 2 + \frac{2}{3} = \frac{8}{3} \)

f. \((f - g)(4) = \sqrt{4+1} - \frac{2}{4} = \sqrt{5} - \frac{1}{2} \)

g. \((f \cdot g)(2) = \frac{2 \sqrt{2+1}}{2} = \frac{2 \sqrt{3}}{2} = \sqrt{3} \)

h. \(\left(\frac{f}{g}\right)(1) = \frac{1 \sqrt{1+1}}{2} = \frac{\sqrt{2}}{2} \)

73. \(f(x) = 3x + 1 \quad (f + g)(x) = 6 - \frac{1}{2}x \)
\(6 - \frac{1}{2}x = 3x + 1 + g(x) \)
\(5 - \frac{7}{2}x = g(x) \)
\(g(x) = 5 - \frac{7}{2}x \)

74. \(f(x) = \frac{1}{x} \quad \left(\frac{f}{g}\right)(x) = \frac{x+1}{x^2 - x} \)
\(\frac{x+1}{x^2 - x} = \frac{1}{x} \quad g(x) = \frac{x^2 - x}{x^2 - x} = \frac{1}{x} \cdot \frac{x(x-1)}{x+1} = \frac{x}{x+1} \)

75. \(f(x) = 4x + 3 \)
\(\frac{f(x+h) - f(x)}{h} = \frac{4(x+h) + 3 - (4x+3)}{h} = \frac{4x + 4h + 3 - 4x - 3}{h} = \frac{4h}{h} = 4 \)

76. \(f(x) = -3x + 1 \)
\(\frac{f(x+h) - f(x)}{h} = \frac{-3(x+h) + 1 - (-3x+1)}{h} = \frac{-3x - 3h + 1 + 3x - 1}{h} = \frac{-3h}{h} = -3 \)

77. \(f(x) = x^2 - x + 4 \)
\(\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - (x+h) + 4 - (x^2 - x + 4)}{h} = \frac{x^2 + 2xh + h^2 - x - h + 4 - x^2 + x - 4}{h} = \frac{2xh + h^2 - h}{h} = 2x + h - 1 \)
78. \(f (x) = 3x^2 - 2x + 6 \)
\[
\frac{f(x + h) - f(x)}{h} = \frac{[3(x + h)^2 - 2(x + h) + 6] - [3x^2 - 2x + 6]}{h}
\]
\[
= \frac{3(x^2 + 2xh + h^2) - 2x - 2h + 6 - 3x^2 - 2x - 6}{h}
\]
\[
= \frac{3x^2 + 6xh + 3h^2 - 2h - 3x^2}{h} = \frac{6xh + 3h^2 - 2h}{h} = 6x + 3h - 2
\]

79. \(f (x) = \frac{1}{x^2} \)
\[
\frac{f(x + h) - f(x)}{h} = \frac{1}{(x + h)^2} - \frac{1}{x^2}
\]
\[
= \frac{x^2 - (x + h)^2}{x^2(x + h)^2}
\]
\[
= \frac{x - (x^2 + 2xh + h^2)}{x^2(x + h)^2}
\]
\[
= \frac{1}{x^2(x + h)^2} \cdot \frac{-2x - h}{h}
\]
\[
= \frac{1}{x^2(x + h)^2} \cdot \frac{-2x - h}{h}
\]
\[
= \frac{-2x - h}{x^2(x + h)^2} = \frac{-2(x + h)}{x^2(x + h)^2}
\]

80. \(f(x) = \frac{1}{x + 3} \)
\[
\frac{f(x + h) - f(x)}{h} = \frac{1}{x + h + 3} - \frac{1}{x + 3}
\]
\[
= \frac{x + 3 - (x + 3 + h)}{(x + h + 3)(x + 3)} \cdot \frac{1}{h}
\]
\[
= \frac{-h}{(x + h + 3)(x + 3)} \cdot \frac{1}{h}
\]
\[
= \frac{1}{(x + h + 3)(x + 3)}
\]

81. \(f(x) = \sqrt{x} \)
\[
\frac{f(x + h) - f(x)}{h} = \frac{\sqrt{x + h} - \sqrt{x}}{h}
\]
\[
= \frac{\sqrt{x + h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}}
\]
\[
= \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})} = \frac{h}{\sqrt{x + h} + \sqrt{x}}
\]
\[
= \frac{1}{\sqrt{x + h} + \sqrt{x}}
\]

82. \(f(x) = \sqrt{x + 1} \)
\[
\frac{f(x + h) - f(x)}{h} = \frac{\sqrt{x + h + 1} - \sqrt{x + 1}}{h}
\]
\[
= \frac{\sqrt{x + h + 1} - \sqrt{x + 1}}{h} \cdot \frac{\sqrt{x + h + 1} + \sqrt{x + 1}}{\sqrt{x + h + 1} + \sqrt{x + 1}}
\]
\[
= \frac{x + h + 1 - (x + 1)}{h(\sqrt{x + h + 1} + \sqrt{x + 1})} = \frac{h}{h(\sqrt{x + h + 1} + \sqrt{x + 1})}
\]
\[
= \frac{1}{\sqrt{x + h + 1} + \sqrt{x + 1}}
\]
Chapter 2: Functions and Their Graphs

83. \(f(x) = 2x^3 + Ax^2 + 4x - 5 \) and \(f(2) = 5 \)

\[f(2) = 2(2^3) + A(2)^2 + 4(2) - 5 \]
\[5 = 16 + 4A + 8 - 5 \]
\[5 = 4A + 19 \]
\[-14 = 4A \]
\[A = \frac{-14}{4} = -\frac{7}{2} \]

84. \(f(x) = 3x^2 - Bx + 4 \) and \(f(-1) = 12 \)

\[f(-1) = 3(-1)^2 - B(-1) + 4 \]
\[12 = 3 + B + 4 \]
\[B = 5 \]

85. \(f(x) = \frac{3x + 8}{2x - A} \) and \(f(0) = 2 \)

\[f(0) = \frac{3(0) + 8}{2(0) - A} \]
\[2 = \frac{8}{-A} \]
\[-2A = 8 \]
\[A = -4 \]

86. \(f(x) = \frac{2x - B}{3x + 4} \) and \(f(2) = \frac{1}{2} \)

\[f(2) = \frac{2(2) - B}{3(2) + 4} \]
\[\frac{1}{2} = \frac{4 - B}{10} \]
\[5 = 4 - B \]
\[B = -1 \]

87. \(f(x) = \frac{2x - A}{x - 3} \) and \(f(4) = 0 \)

\[f(4) = \frac{2(4) - A}{4 - 3} \]
\[0 = \frac{8 - A}{1} \]
\[0 = 8 - A \]
\[A = 8 \]
\(f \) is undefined when \(x = 3 \).

88. \(f(x) = \frac{x - B}{x - A} \), \(f(2) = 0 \) and \(f(1) \) is undefined

\[1 - A = 0 \Rightarrow A = 1 \]
\[f(2) = \frac{2 - B}{2 - 1} \]
\[0 = \frac{2 - B}{1} \]
\[0 = 2 - B \]
\[B = 2 \]

89. Let \(x \) represent the length of the rectangle.

Then, \(\frac{x}{2} \) represents the width of the rectangle since the length is twice the width. The function for the area is: \(A(x) = x \cdot \frac{x}{2} = \frac{1}{2}x^2 \)

90. Let \(x \) represent the length of one of the two equal sides. The function for the area is:

\[A(x) = \frac{1}{2} \cdot x \cdot x = \frac{1}{2}x^2 \]

91. Let \(x \) represent the number of hours worked.

The function for the gross salary is:

\[G(x) = 10x \]

92. Let \(x \) represent the number of items sold.

The function for the gross salary is:

\[G(x) = 10x + 100 \]

93. a. \(P \) is the dependent variable; \(a \) is the independent variable

b. \(P(20) = 0.015(20)^2 - 4.962(20) + 290.580 \)
\[= 6 - 99.24 + 290.580 \]
\[= 197.34 \]
In 2005 there are 197.34 million people who are 20 years of age or older.

c. \(P(0) = 0.015(0)^2 - 4.962(0) + 290.580 \)
\[= 290.580 \]
In 2005 there are 290.580 million people.

94. a. \(N \) is the dependent variable; \(r \) is the independent variable

b. \(N(3) = -1.44(3)^2 + 14.52(3) - 14.96 \)
\[= -12.96 + 43.56 - 14.96 \]
\[= 15.64 \]
In 2005, there are 15.64 million housing units with 3 rooms.
95. **a.** \(H(1) = 20 - 4.9(1)^2 \)
\[= 20 - 4.9 = 15.1 \text{ meters} \]

\(H(1.1) = 20 - 4.9(1.1)^2 \)
\[= 20 - 4.9(1.21) \]
\[= 20 - 5.929 = 14.071 \text{ meters} \]

\(H(1.2) = 20 - 4.9(1.2)^2 \)
\[= 20 - 4.9(1.44) \]
\[= 20 - 7.056 = 12.944 \text{ meters} \]

\(H(1.3) = 20 - 4.9(1.3)^2 \)
\[= 20 - 4.9(1.69) \]
\[= 20 - 8.281 = 11.719 \text{ meters} \]

b. \(H(x) = 15 \):
\[15 = 20 - 4.9x^2 \]
\[-5 = -4.9x^2 \]
\[x^2 = 1.0204 \]
\[x = 1.01 \text{ seconds} \]

\(H(x) = 10 \):
\[10 = 20 - 4.9x^2 \]
\[-10 = -4.9x^2 \]
\[x^2 = 2.0408 \]
\[x = 1.43 \text{ seconds} \]

\(H(x) = 5 \):
\[5 = 20 - 4.9x^2 \]
\[-15 = -4.9x^2 \]
\[x^2 = 3.0612 \]
\[x = 1.75 \text{ seconds} \]

c. \(H(x) = 0 \)
\[0 = 20 - 4.9x^2 \]
\[-20 = -4.9x^2 \]
\[x^2 = 4.0816 \]
\[x = 2.02 \text{ seconds} \]

96. **a.** \(H(1) = 20 - 13(1)^2 = 20 - 13 = 7 \text{ meters} \)

\(H(1.1) = 20 - 13(1.1)^2 = 20 - 13(1.21) \)
\[= 20 - 15.73 = 4.27 \text{ meters} \]

\(H(1.2) = 20 - 13(1.2)^2 = 20 - 13(1.44) \)
\[= 20 - 18.72 = 1.28 \text{ meters} \]

b. \(H(x) = 15 \)
\[15 = 20 - 13x^2 \]
\[-5 = -13x^2 \]
\[x^2 = 0.3846 \]
\[x = 0.62 \text{ seconds} \]

\(H(x) = 10 \)
\[10 = 20 - 13x^2 \]
\[-10 = -13x^2 \]
\[x^2 = 0.7692 \]
\[x = 0.88 \text{ seconds} \]

\(H(x) = 5 \)
\[5 = 20 - 13x^2 \]
\[-15 = -13x^2 \]
\[x^2 = 1.1538 \]
\[x = 1.07 \text{ seconds} \]

97. \(C(x) = 100 + \frac{x}{10} + \frac{36,000}{x} \)

a. \(C(500) = 100 + \frac{500}{10} + \frac{36,000}{500} \)
\[= 100 + 50 + 72 \]
\[= 222 \]

b. \(C(450) = 100 + \frac{450}{10} + \frac{36,000}{450} \)
\[= 100 + 45 + 80 \]
\[= 225 \]

c. \(C(600) = 100 + \frac{600}{10} + \frac{36,000}{600} \)
\[= 100 + 60 + 60 \]
\[= 220 \]

d. \(C(400) = 100 + \frac{400}{10} + \frac{36,000}{400} \)
\[= 100 + 40 + 90 \]
\[= 230 \]
98. \(A(x) = 4x\sqrt{1-x^2} \)

(a) \(A\left(\frac{1}{3}\right) = 4 \cdot \frac{1}{3} \sqrt{1 - \left(\frac{1}{3}\right)^2} = 4 \cdot \frac{2}{3} \cdot \frac{2}{3} \sqrt{1} = \frac{8}{9} \sqrt{2} = 1.26 \text{ ft}^2 \)

(b) \(A\left(\frac{1}{2}\right) = 4 \cdot \frac{1}{2} \sqrt{1 - \left(\frac{1}{2}\right)^2} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} \sqrt{2} = \frac{\sqrt{2}}{2} = 1.73 \text{ ft}^2 \)

(c) \(A\left(\frac{2}{3}\right) = 4 \cdot \frac{2}{3} \sqrt{1 - \left(\frac{2}{3}\right)^2} = 8 \cdot \frac{1}{3} \cdot \frac{1}{3} \sqrt{3} = \frac{8}{9} \sqrt{3} = 1.99 \text{ ft}^2 \)

99. \(R(x) = \left(\frac{L}{P}\right)(x) = \frac{L(x)}{P(x)} \)

100. \(T(x) = (V + P)(x) = V(x) + P(x) \)

101. \(H(x) = (P \cdot I)(x) = P(x) \cdot I(x) \)

102. \(N(x) = (I - T)(x) = I(x) - T(x) \)

103. a. \(P(x) = R(x) - C(x) \)
\[
= (-1.2x^2 + 220x) - (0.05x^3 - 2x^2 + 65x + 500)
= -1.2x^2 + 220x - 0.05x^3 + 2x^2 - 65x - 500
= -0.05x^3 + 0.8x^2 + 155x - 500
\]

b. \(P(15) = -0.05(15)^3 + 0.8(15)^2 + 155(15) - 500 \)
\[
= -168.75 + 180 + 2325 - 500
= 1836.25
\]

c. When 15 hundred cell phones are sold, the profit is $1836.25.

104. a. \(P(x) = R(x) - C(x) \)
\[
= 30x - (0.1x^2 + 7x + 400)
= 30x - 0.1x^2 - 7x - 400
= -0.1x^2 + 23x - 400
\]
\[P(30) = -0.1(30)^2 + 23(30) - 400 \]
\[
= -90 + 690 - 400
= 200
\]

b. \(h(x) = 2x \)
\(h(a+b) = 2(a+b) = 2a + 2b \)
\(h(a) + h(b) = 2a + 2b \)
\(h(x) = 2x \) has the property.

105. a. \(g(x) = x^2 \)
\(g(a + b) = (a + b)^2 = a^2 + 2ab + b^2 \)
Since \(a^2 + 2ab + b^2 \neq a^2 + b^2 = g(a) + g(b) \),
\(g(x) = x^2 \) does not have the property.

b. \(F(x) = 5x - 2 \)
\(F(a + b) = 5(a + b) - 2 = 5a + 5b - 2 \)
Since \(5a + 5b - 2 \neq 5a - 2 + 5b - 2 = F(a) + F(b) \),
\(F(x) = 5x - 2 \) does not have the property.

c. \(G(x) = \frac{1}{x} \)
\(G(a + b) = \frac{1}{a + b} \neq \frac{1}{a} + \frac{1}{b} = G(a) + G(b) \)
\(G(x) = \frac{1}{x} \) does not have the property.

106. No. The domain of \(f \) is \(\{x \mid x \text{ is any real number}\} \),
but the domain of \(g \) is \(\{x \mid x \neq -1\} \).

107. Answers will vary.

108. \(\frac{3x - x^3}{(your\ age)} \)
Section 2.2

1. \(x^2 + 4y^2 = 16 \)
 - x-intercepts:
 \(x^2 + 4(0)^2 = 16 \)
 \(x^2 = 16 \)
 \(x = \pm 4 \Rightarrow (-4, 0), (4, 0) \)
 - y-intercepts:
 \((0)^2 + 4y^2 = 16 \)
 \(4y^2 = 16 \)
 \(y^2 = 4 \)
 \(y = \pm 2 \Rightarrow (0, -2), (0, 2) \)

2. False; \(x = 2y - 2 \)
 - \(-2 = 2y - 2 \)
 - \(0 = 2y \)
 - \(0 = y \)
 The point \((-2, 0)\) is on the graph.

3. vertical

4. \(f(5) = -3 \)

5. \(f(x) = ax^2 + 4 \)
 - \(a(-1)^2 + 4 = 2 \Rightarrow a = -2 \)

6. False; it would fail the vertical line test.

7. False; e.g. \(y = \frac{1}{x} \).

8. True

9. a. \(f(0) = 3 \) since \((0, 3)\) is on the graph.
 \(f(-6) = -3 \) since \((-6, -3)\) is on the graph.
 b. \(f(6) = 0 \) since \((6, 0)\) is on the graph.
 \(f(11) = 1 \) since \((11, 1)\) is on the graph.
 c. \(f(3) \) is positive since \(f(3) = 3.7 \).
 d. \(f(-4) \) is negative since \(f(-4) = -1 \).
 e. \(f(x) = 0 \) when \(x = -3, x = 6, \) and \(x = 10 \).
 f. \(f(x) > 0 \) when \(-3 < x < 6, \) and \(10 < x \leq 11 \).

10. a. \(f(0) = 0 \) since \((0, 0)\) is on the graph.
 \(f(6) = 0 \) since \((6, 0)\) is on the graph.
 b. \(f(2) = -2 \) since \((2, -2)\) is on the graph.
 \(f(-2) = 1 \) since \((-2, 1)\) is on the graph.
 c. \(f(3) \) is negative since \(f(3) = -1 \).
 d. \(f(-1) \) is positive since \(f(-1) = 1.0 \).
 e. \(f(x) = 0 \) when \(x = 0, x = 4, \) and \(x = 6 \).
 f. \(f(x) < 0 \) when \(0 < x < 4 \).
 g. The domain of \(f \) is \(\{x \mid -6 \leq x \leq 11\} \) or \([-6, 11]\).
 h. The range of \(f \) is \(\{y \mid -3 \leq y \leq 4\} \) or \([-3, 4]\).
 i. The x-intercepts are -3, 6, and 10.
 j. The y-intercept is 3.
 k. The line \(y = \frac{1}{2} \) intersects the graph 3 times.
 l. The line \(x = 5 \) intersects the graph 1 time.
 m. \(f(x) = 3 \) when \(x = 0 \) and \(x = 4 \).
 n. \(f(x) = -2 \) when \(x = -5 \) and \(x = 8 \).

11. a. Not a function since vertical lines will intersect the graph in more than one point.

12. Function
Chapter 2: Functions and Their Graphs

13. Function
 a. Domain: \(\{ x \mid -\pi \leq x \leq \pi \} \);
 Range: \(\{ y \mid -1 \leq y \leq 1 \} \)
 b. Intercepts: \((-\pi, 0), (\pi, 0), (0, 0)\)
 c. Symmetry about the origin.

14. Function
 a. Domain: \(\{ x \mid -\pi \leq x \leq \pi \} \);
 Range: \(\{ y \mid -1 \leq y \leq 1 \} \)
 b. Intercepts: \((-\pi, 0), (\pi, 0), (0, 0)\)
 c. Symmetry about the origin.

15. Not a function since vertical lines will intersect the graph in more than one point.

16. Not a function since vertical lines will intersect the graph in more than one point.

17. Function
 a. Domain: \(\{ x \mid 0 < x < 3 \} \);
 Range: \(\{ y \mid y < 2 \} \)
 b. Intercepts: \((1, 0)\)
 c. None

18. Function
 a. Domain: \(\{ x \mid 0 \leq x < 4 \} \);
 Range: \(\{ y \mid 0 \leq y < 3 \} \)
 b. Intercepts: \((0, 0)\)
 c. None

19. Function
 a. Domain: \(\{ x \mid x \text{ is any real number} \} \);
 Range: \(\{ y \mid y \leq 2 \} \)
 b. Intercepts: \((-3, 0), (3, 0), (0, 2)\)
 c. Symmetry about y-axis.

20. Function
 a. Domain: \(\{ x \mid x \geq -3 \} \);
 Range: \(\{ y \mid y \geq 0 \} \)
 b. Intercepts: \((-3, 0), (2,0), (0,2)\)
 c. None

21. Function
 a. Domain: \(\{ x \mid x \text{ is any real number} \} \);
 Range: \(\{ y \mid y \geq -3 \} \)
 b. Intercepts: \((1, 0), (3,0), (0,9)\)
 c. None

22. Function
 a. Domain: \(\{ x \mid x \text{ is any real number} \} \);
 Range: \(\{ y \mid y \leq 5 \} \)
 b. Intercepts: \((-1, 0), (2,0), (0,4)\)
 c. None

23. \(f(x) = 2x^2 - x - 1 \)
 a. \(f(-1) = 2(-1)^2 - (-1) - 1 = 2 \)
 The point \((-1,2)\) is on the graph of \(f \).
 b. \(f(-2) = 2(-2)^2 - (-2) - 1 = 9 \)
 The point \((-2,9)\) is on the graph of \(f \).
 c. Solve for \(x \):
 \[-1 = 2x^2 - x - 1 \]
 \[0 = 2x^2 - x \]
 \[0 = x(2x - 1) \Rightarrow x = 0, x = \frac{1}{2} \]
 \((0, -1)\) and \(\left(\frac{1}{2}, -1\right) \) are on the graph of \(f \).
 d. The domain of \(f \) is \(\{ x \mid x \text{ is any real number} \} \).
 e. \(x\)-intercepts:
 \[f(x) = 0 \Rightarrow 2x^2 - x - 1 = 0 \]
 \[(2x + 1)(x - 1) = 0 \Rightarrow x = -\frac{1}{2}, x = 1 \]
 \(-\frac{1}{2}, 0\) and \((1,0)\)
Section 2.2: The Graph of a Function

f. y-intercept:
 \[f(0) = 2(0)^2 - 0 - 1 = -1 \Rightarrow (0, -1) \]

24. \[f(x) = -3x^2 + 5x \]
 a. \[f(-1) = -3(-1)^2 + 5(-1) = -8 \neq 2 \]
 The point \((-1, 2)\) is not on the graph of \(f\).
 b. \[f(-2) = -3(-2)^2 + 5(-2) = -22 \]
 The point \((-2, -22)\) is on the graph of \(f\).
 c. Solve for \(x\):
 \[-2 = -3x^2 + 5x \rightarrow 3x^2 - 5x - 2 = 0 \]
 \(3x + 1)(x - 2) = 0 \Rightarrow x = -\frac{1}{3}, x = 2\)
 \((2, -2)\) and \((-\frac{1}{3}, -2)\) on the graph of \(f\).
 d. The domain of \(f\) is \(\{x \mid x \text{ is any real number}\}\).
 e. \(x\)-intercepts:
 \[f(x) = 0 \Rightarrow -3x^2 + 5x = 0 \]
 \(x(-3x + 5) = 0 \Rightarrow x = 0, x = \frac{5}{3}\)
 \((0, 0)\) and \((\frac{5}{3}, 0)\)
 f. y-intercept:
 \[f(0) = -3(0)^2 + 5(0) = 0 \Rightarrow (0, 0) \]

25. \[f(x) = \frac{x+2}{x-6} \]
 a. \[f(3) = \frac{3+2}{3-6} = \frac{-5}{3} \neq 14 \]
 The point \((3, 14)\) is not on the graph of \(f\).
 b. \[f(4) = \frac{4+2}{4-6} = \frac{6}{-2} = -3 \]
 The point \((4, -3)\) is on the graph of \(f\).
 c. Solve for \(x\):
 \[2 = \frac{x+2}{x-6} \]
 \[2x - 12 = x + 2 \]
 \[x = 14 \]
 \((14, 2)\) is a point on the graph of \(f\).
 d. The domain of \(f\) is \(\{x \mid x \neq 6\}\).
 e. \(x\)-intercepts:
 \[f(x) = 0 \Rightarrow \frac{x+2}{x-6} = 0 \]
 \[x + 2 = 0 \Rightarrow x = -2 \Rightarrow (-2, 0) \]
 f. y-intercept:
 \[f(0) = \frac{0+2}{0-6} = -\frac{1}{3} \Rightarrow (0, -\frac{1}{3}) \]

26. \[f(x) = \frac{x^2 + 2}{x+4} \]
 a. \[f(1) = \frac{1^2 + 2}{1+4} = \frac{3}{5} \]
 The point \(\left(1, \frac{3}{5}\right)\) is on the graph of \(f\).
 b. \[f(0) = \frac{0^2 + 2}{0+4} = \frac{2}{4} = \frac{1}{2} \]
 The point \(\left(0, \frac{1}{2}\right)\) is on the graph of \(f\).
 c. Solve for \(x\):
 \[\frac{1}{2} = \frac{x^2 + 2}{x+4} \Rightarrow x + 4 = 2x^2 + 4 \]
 \[0 = 2x^2 - x \]
 \[x(2x - 1) = 0 \Rightarrow x = 0 \text{ or } x = \frac{1}{2} \]
 \(\left(0, \frac{1}{2}\right)\) and \(\left(\frac{1}{2}, \frac{1}{2}\right)\) are on the graph of \(f\).
 d. The domain of \(f\) is \(\{x \mid x \neq -4\}\).
 e. \(x\)-intercepts:
 \[f(x) = 0 \Rightarrow \frac{x^2 + 2}{x+4} = 0 \Rightarrow x^2 + 2 = 0 \]
 This is impossible, so there are no \(x\)-intercepts.
 f. y-intercept:
 \[f(0) = \frac{0^2 + 2}{0+4} = \frac{2}{4} = \frac{1}{2} \Rightarrow \left(0, \frac{1}{2}\right) \]

27. \[f(x) = \frac{2x^2}{x^4 + 1} \]
 a. \[f(-1) = \frac{2(-1)^2}{(-1)^4 + 1} = \frac{2}{2} = 1 \]
 The point \((-1, 1)\) is on the graph of \(f\).
b. \(f(2) = \frac{2(2)^2}{2^4 + 1} = \frac{8}{17} \)

The point \(\left(\frac{2}{17}, \frac{8}{17} \right) \) is on the graph of \(f \).

c. Solve for \(x \):

\[
1 = \frac{2x^2}{x^4 + 1} \\
x^4 + 1 = 2x^2 \\
x^4 - 2x^2 + 1 = 0 \\
(x^2 - 1)^2 = 0 \\
x^2 - 1 = 0 \Rightarrow x = \pm 1 \\
(1,1) \text{ and } (-1,1) \text{ are on the graph of } f .
\]

d. The domain of \(f \) is \(\{x | x \text{ is any real number} \} \).

e. \(x \)-intercept:

\[
f(x) = 0 \Rightarrow \frac{2x}{x^2 + 1} = 0 \\
2x^2 = 0 \Rightarrow x = 0 \Rightarrow (0,0)
\]

f. \(y \)-intercept:

\[
f(0) = \frac{2(0)^2}{0^2 + 1} = 0 \\
0 = 0 \Rightarrow (0,0)
\]

29. \(h(x) = -\frac{44x^2}{v^2} + x + 6 \)

a. \(h(8) = -\frac{44(8)^2}{28^2} + (8) + 6 \\
= -\frac{2816}{784} + 14 \\
= 10.4 \text{ feet}
\]

b. \(h(12) = -\frac{44(12)^2}{28^2} + (12) + 6 \\
= -\frac{6336}{784} + 18 \\
= 9.9 \text{ feet}
\]

\(h(12) = 9.9 \) represents the height of the ball, in feet, after it has traveled 12 feet in front of the foul line.

c. From part (a) we know the point \((8,10.4)\) is on the graph and from part (b) we know the point \((12,9.9)\) is on the graph. We could evaluate the function at several more values of \(x \) (e.g. \(x = 0, x = 15, \) and \(x = 20 \)) to obtain additional points.

\[
h(0) = -\frac{44(0)^2}{28^2} + (0) + 6 = 6 \\
h(15) = -\frac{44(15)^2}{28^2} + (15) + 6 = 8.4 \\
h(20) = -\frac{44(20)^2}{28^2} + (20) + 6 = 3.6
\]

Some additional points are \((0,6), (15,8.4)\) and \((20,3.6)\). The complete graph is given
Section 2.2: The Graph of a Function

30. \(h(x) = -\frac{136x^2}{v^2} + 2.7x + 3.5 \)

 a. We want \(h(15) = 10 \).

 \[-\frac{136(15)^2}{v^2} + 2.7(15) + 3.5 = 10 \]

 \[-\frac{30,600}{v^2} = -34 \]

 \[v^2 = 900\]

 \[v = 30 \text{ ft/sec}\]

 The ball needs to be thrown with an initial velocity of 30 feet per second.

b. \(h(x) = -\frac{126x^2}{30^2} + 2.7x + 3.5 \)
 which simplifies to

 \[h(x) = -\frac{34}{225}x^2 + 2.7x + 3.5 \]

 c. Using the velocity from part (b),

 \[h(9) = -\frac{34}{225}(9)^2 + 2.7(9) + 3.5 = 15.56 \text{ ft} \]

 The ball will be 15.56 feet above the floor when it has traveled 9 feet in front of the foul line.

 d. Select several values for \(x \) and use these to find the corresponding values for \(h \). Use the results to form ordered pairs \((x, h)\). Plot the points and connect with a smooth curve.

 \(h(0) = -\frac{34}{225}(0)^2 + 2.7(0) + 3.5 = 3.5 \text{ ft} \)

 \(h(5) = -\frac{34}{225}(5)^2 + 2.7(5) + 3.5 = 13.2 \text{ ft} \)

 \(h(15) = -\frac{24}{225}(15)^2 + 2.7(15) + 3.5 = 10 \text{ ft} \)

 Thus, some points on the graph are \((0,3.5)\), \((5,13.2)\), and \((15,10)\). The complete graph is given below.

 ![Graph of a Function](image)

31. \(h(x) = -\frac{32x^2}{130^2} + x \)

 a. \(h(100) = -\frac{32(100)^2}{130^2} + 100 \)

 \[= -\frac{320,000}{16,900} + 100 = 81.07 \text{ feet} \]

 b. \(h(300) = -\frac{32(300)^2}{130^2} + 300 \)

 \[= -\frac{2,880,000}{16,900} + 300 = 129.59 \text{ feet} \]
Chapter 2: Functions and Their Graphs

c. \[h(500) = \frac{-32(500)^2}{130^2} + 500 \]
\[= \frac{-8,000,000}{16,900} + 500 = 26.63 \text{ feet} \]

\(h(500) = 26.63 \text{ feet} \) represents the height of the golf ball, in feet, after it has traveled a horizontal distance of 500 feet.

d. Solving \(h(x) = \frac{-32x^2}{130^2} + x = 0 \)
\[-\frac{32x^2}{130^2} + x = 0 \]
\[x\left(\frac{-32x}{130^2} + 1\right) = 0 \]
\[x = 0 \text{ or } \frac{-32x}{130^2} + 1 = 0 \]
\[1 = \frac{32x}{130^2} \]
\[130^2 = 32x \]
\[x = \frac{130^2}{32} = 528.13 \text{ feet} \]
Therefore, the golf ball travels 528.13 feet.

e. \[y_1 = \frac{-32x^2}{130^2} + x \]

f. Use INTERSECT on the graphs of \(y_1 = \frac{-32x^2}{130^2} + x \) and \(y_2 = 90 \).

The ball reaches a height of 90 feet twice. The first time is when the ball has traveled approximately 115.07 feet, and the second time is when the ball has traveled about 413.05 feet.

g. The ball travels approximately 275 feet before it reaches its maximum height of approximately 131.8 feet.

<table>
<thead>
<tr>
<th>X</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>31.36</td>
</tr>
<tr>
<td>201</td>
<td>31.31</td>
</tr>
<tr>
<td>202</td>
<td>31.26</td>
</tr>
<tr>
<td>203</td>
<td>31.21</td>
</tr>
<tr>
<td>204</td>
<td>31.16</td>
</tr>
<tr>
<td>205</td>
<td>31.11</td>
</tr>
<tr>
<td>206</td>
<td>26.63</td>
</tr>
<tr>
<td>207</td>
<td>22.15</td>
</tr>
<tr>
<td>208</td>
<td>17.66</td>
</tr>
<tr>
<td>209</td>
<td>13.18</td>
</tr>
<tr>
<td>210</td>
<td>8.70</td>
</tr>
</tbody>
</table>

h. The ball travels approximately 264 feet before it reaches its maximum height of approximately 132.03 feet.

<table>
<thead>
<tr>
<th>X</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>31.36</td>
</tr>
<tr>
<td>201</td>
<td>31.31</td>
</tr>
<tr>
<td>202</td>
<td>31.26</td>
</tr>
<tr>
<td>203</td>
<td>31.21</td>
</tr>
<tr>
<td>204</td>
<td>31.16</td>
</tr>
<tr>
<td>205</td>
<td>31.11</td>
</tr>
<tr>
<td>206</td>
<td>26.63</td>
</tr>
<tr>
<td>207</td>
<td>22.15</td>
</tr>
<tr>
<td>208</td>
<td>17.66</td>
</tr>
<tr>
<td>209</td>
<td>13.18</td>
</tr>
<tr>
<td>210</td>
<td>8.70</td>
</tr>
</tbody>
</table>

32. \[A(x) = 4\sqrt{1-x^2} \]

a. Domain of \(A(x) = 4\sqrt{1-x^2} \); we know that \(x \) must be greater than or equal to zero, since \(x \) represents a length. We also need \(1-x^2 \geq 0 \), since this expression occurs under a square root. In fact, to avoid Area = 0, we require \(x > 0 \) and \(1-x^2 > 0 \).

Solve: \(1-x^2 > 0 \)
\[(1+x)(1-x) > 0 \]

Case1: \(1+x > 0 \) and \(1-x > 0 \)
\[x > -1 \text{ and } x < 1 \]
\[(i.e. \ -1 < x < 1) \]

Case2: \(1+x < 0 \) and \(1-x < 0 \)
\[x < -1 \text{ and } x > 1 \]
\[(which \ is \ impossible) \]
Therefore the domain of \(A \) is \(\{ x \mid 0 < x < 1 \} \).
Section 2.2: The Graph of a Function

b. Graphing $A(x) = 4x\sqrt{1 - x^2}$

\[\begin{array}{c|c}
 x & A(x) \\
 \hline
 0 & 1.9996 \\
 0.25 & 1.9856 \\
 0.5 & 1.9624 \\
 0.75 & 1.9196 \\
 1 & 1.8572 \\
 \end{array} \]

33. $C(x) = 100 + \frac{x}{10} + \frac{36000}{x}$

a. Graphing:

b. TblStart = 0; ΔTbl = 50

On Pike’s Peak, Amy will weigh about 119.84 pounds.

b. Graphing:

34. $W(h) = m \left(\frac{4000}{4000 + h} \right)^2$

On Pike’s Peak, Amy will weigh about 119.84 pounds.

35. a. $(f + g)(2) = f(2) + g(2) = 2 + 1 = 3$

b. $(f + g)(4) = f(4) + g(4) = 1 + (-3) = -2$

c. $(f - g)(6) = f(6) - g(6) = 0 - 1 = -1$

d. $(g - f)(6) = g(6) - f(6) = 1 - 0 = 1$

e. $(f \cdot g)(2) = f(2) \cdot g(2) = 2(1) = 2$

f. $\left(\frac{f}{g} \right)(4) = \frac{f(4)}{g(4)} = \frac{1}{-3} = -\frac{1}{3}$

36. a. $C(0) = 5000$

This represents the fixed overhead costs. That is, the company will incur costs of $5000 per day even if no computers are manufactured.

b. $C(10) = 19,000$

It costs the company $19,000 to produce 10 computers in a day.
Chapter 2: Functions and Their Graphs

c. \(C(50) = 51,000 \)
 It costs the company $51,000 to produce 50 computers in a day.

d. The domain is \(\{q \mid 0 \leq q \leq 100\} \). This indicates that production capacity is limited to 100 computers in a day.

e. The graph is curved down and rises slowly at first. As production increases, the graph becomes rises more quickly and changes to being curved up.

f. The inflection point is where the graph changes from being curved down to being curved up.

37. a. \(C(0) = 80 \)
 This represents the monthly fee. The plan costs $80 per month even if no minutes are used.

b. \(C(1000) = 80 \)
 The monthly charge is $80 if 1000 minutes are used. Since this is the same as the cost for 0 minutes, all these minutes are included in the base plan.

c. \(C(2000) = 210 \)
 The monthly charge is $210 if 2000 minutes are used.

d. The domain is \(\{m \mid 0 \leq m \leq 14,400\} \). The domain implies that there are at most 14,400 anytime minutes in a month.

e. The graph starts off flat (horizontal line), then increases at a constant rate (straight line with positive slope) after \(m = 1000 \).

38. Answers will vary. From a graph, the domain can be found by visually locating the \(x \)-values for which the graph is defined. The range can be found in a similar fashion by visually locating the \(y \)-values for which the function is defined. If an equation is given, the domain can be found by locating any restricted values and removing them from the set of real numbers. The range can be found by using known properties of the graph of the equation, or estimated by means of a table of values.

39. The graph of a function can have any number of \(x \)-intercepts. The graph of a function can have at most one \(y \)-intercept (otherwise the graph would fail the vertical line test).

40. Yes, the graph of a single point is the graph of a function since it would pass the vertical line test. The equation of such a function would be something like the following: \(f(x) = 2 \), where \(x = 7 \).

41. (a) III; (b) IV; (c) I; (d) V; (e) II

42. (a) II; (b) V; (c) IV; (d) III; (e) I

43. The graph of a function can have any number of \(x \)-intercepts. The graph of a function can have at most one \(y \)-intercept (otherwise the graph would fail the vertical line test).

44. Yes, the graph of a single point is the graph of a function since it would pass the vertical line test. The equation of such a function would be something like the following: \(f(x) = 2 \), where \(x = 7 \).

45. (a) III; (b) IV; (c) I; (d) V; (e) II

46. (a) II; (b) V; (c) IV; (d) III; (e) I

47. The graph of a function can have any number of \(x \)-intercepts. The graph of a function can have at most one \(y \)-intercept (otherwise the graph would fail the vertical line test).

48. Yes, the graph of a single point is the graph of a function since it would pass the vertical line test. The equation of such a function would be something like the following: \(f(x) = 2 \), where \(x = 7 \).
44. a. 2 hours elapsed; Kevin was between 0 and 3 miles from home.
b. 0.5 hours elapsed; Kevin was 3 miles from home.
c. 0.3 hours elapsed; Kevin was between 0 and 3 miles from home.
d. 0.2 hours elapsed; Kevin was at home.
e. 0.9 hours elapsed; Kevin was between 0 and 3 miles from home.
f. 0.3 hours elapsed; Kevin was 2.8 miles from home.
g. 1.1 hours elapsed; Kevin was 2.8 miles from home.
h. The farthest distance Kevin is from home is 3 miles.
i. Kevin returned home 2 times.

45. a. Michael travels fastest between 7 and 7.4 minutes. That is, $(7,7.4)$.
b. Michael’s speed is zero between 4.2 and 6 minutes. That is, $(4,2,6)$.
c. Between 0 and 2 minutes, Michael’s speed increased from 0 to 30 miles/hour.
d. Between 4.2 and 6 minutes, Michael was stopped (i.e., his speed was 0 miles/hour).
e. Between 7 and 7.4 minutes, Michael was traveling at a steady rate of 50 miles/hour.
f. Michael’s speed is constant between 2 and 4 minutes, between 4.2 and 6 minutes, between 7 and 7.4 minutes, and between 7.6 and 8 minutes. That is, on the intervals $(2, 4), (4.2, 6), (7, 7.4)$, and $(7.6, 8)$.

47. Answers (graphs) will vary. Points of the form $(5, y)$ and of the form $(x, 0)$ cannot be on the graph of the function.

48. The only such function is $f(x) = 0$ because it is the only function for which $f(x) = -f(x)$. Any other such graph would fail the vertical line test.

Section 2.3

1. $2 < x < 5$

2. $\text{slope} = \frac{\Delta y}{\Delta x} = \frac{8 - 3}{3 - (-2)} = \frac{5}{5} = 1$

3. x-axis: $y \rightarrow -y$

 $(-y) = 5x^2 - 1$

 $-y = 5x^2 - 1$

 $y = -5x^2 + 1$ different

 y-axis: $x \rightarrow -x$

 $y = 5(-x)^2 - 1$

 $y = 5x^2 - 1$

 origin: $x \rightarrow -x$ and $y \rightarrow -y$

 $(-y) = 5(-x)^2 - 1$

 $-y = 5x^2 - 1$

 $y = -5x^2 + 1$ different

 The equation has symmetry with respect to the y-axis only.

4.
 $y - y_1 = m(x - x_1)$

 $y - (-2) = 5(x - 3)$

 $y + 2 = 5(x - 3)$

5. $y = x^2 - 9$

 x-intercepts:

 $0 = x^2 - 9$

 $x^2 = 9 \rightarrow x = \pm 3$

 y-intercept:

 $y = (0)^2 - 9 = -9$

 The intercepts are $(3, 0)$, $(0, 0)$, and $(3, 0)$.

6. increasing
7. even; odd
8. True
9. True
10. False; odd functions are symmetric with respect to the origin. Even functions are symmetric with respect to the y-axis.
11. Yes
12. No, it is increasing.
13. No, it only increases on $(5, 10)$.
14. Yes
15. f is increasing on the intervals $(-8, -2)$, $(0, 2)$, $(5, \infty)$.
16. f is decreasing on the intervals: $(-\infty, -8)$, $(-2, 0)$, $(2, 5)$.
17. Yes. The local maximum at $x = 2$ is 10.
18. No. There is a local minimum at $x = 5$; the local minimum is 0.
19. f has local maxima at $x = -2$ and $x = 2$. The local maxima are 6 and 10, respectively.
20. f has local minima at $x = -8$, $x = 0$ and $x = 5$. The local minima are -4, 0, and 0, respectively.
21. a. Intercepts: $(-2, 0), (2, 0)$, and $(0, 3)$.
 b. Domain: $\{x | -4 \leq x \leq 4\}$ or $[-4, 4]$;
 Range: $\{y | 0 \leq y \leq 3\}$ or $[0, 3]$;
 c. Increasing: $(-2, 0)$ and $(2, 4)$;
 Decreasing: $(-4, -2)$ and $(0, 2)$.
 d. Since the graph is symmetric with respect to the y-axis, the function is even.
22. a. Intercepts: $(-1, 0), (1, 0)$, and $(0, 2)$.
 b. Domain: $\{x | -3 \leq x \leq 3\}$ or $[-3, 3]$;
 Range: $\{y | 0 \leq y \leq 3\}$ or $[0, 3]$;
 c. Increasing: $(-1, 0)$ and $(1, 3)$;
 Decreasing: $(-3, -1)$ and $(0, 1)$.
 d. Since the graph is symmetric with respect to the y-axis, the function is even.
23. a. Intercepts: $(0, 1)$.
 b. Domain: $\{x | x$ is any real number$\}$;
 Range: $\{y | y > 0\}$ or $(0, \infty)$.
 c. Increasing: $(-\infty, \infty)$; Decreasing: never.
 d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.
24. a. Intercepts: $(1, 0)$.
 b. Domain: $\{x | x > 0\}$ or $(0, \infty)$;
 Range: $\{y | y$ is any real number$\}$.
 c. Increasing: $(0, \infty)$; Decreasing: never.
 d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.
25. a. Intercepts: $(-\pi, 0), (\pi, 0)$, and $(0, 0)$.
 b. Domain: $\{x | -\pi \leq x \leq \pi\}$ or $[-\pi, \pi]$;
 Range: $\{y | -1 \leq y \leq 1\}$ or $[-1, 1]$.
 c. Increasing: $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$;
 Decreasing: $\left(-\pi, -\frac{\pi}{2}\right)$ and $\left(\frac{\pi}{2}, \pi\right)$.
 d. Since the graph is symmetric with respect to the origin, the function is odd.
26. a. Intercepts: $\left(-\frac{\pi}{2}, 0\right), \left(\frac{\pi}{2}, 0\right)$, and $(0, 1)$.
 b. Domain: $\{x | -\pi \leq x \leq \pi\}$ or $[-\pi, \pi]$;
 Range: $\{y | -1 \leq y \leq 1\}$ or $[-1, 1]$.
 c. Increasing: $(-\pi, 0)$; Decreasing: $(0, \pi)$.
 d. Since the graph is symmetric with respect to the y-axis, the function is even.
27. a. Intercepts: $\left(\frac{1}{3}, 0\right), \left(\frac{5}{2}, 0\right)$, and $(0, 1)$.
 b. Domain: $\{x | -3 \leq x \leq 3\}$ or $[-3, 3]$;
 Range: $\{y | -1 \leq y \leq 2\}$ or $[-1, 2]$.

Copyright © 2013 Pearson Education, Inc.
c. Increasing: \((2, 3)\); Decreasing: \((-1, 1)\);
 Constant: \((-3, -1)\) and \((1, 2)\)

d. Since the graph is not symmetric with respect to the \(y\)-axis or the origin, the function is neither even nor odd.

28. a. Intercepts: \((-2.3, 0), (3, 0),\) and \((0, 1)\).

b. Domain: \([x | -3 \leq x \leq 3]\) or \([-3, 3]\);
 Range: \([y | -2 \leq y \leq 2]\) or \([-2, 2]\).

c. Increasing: \((-3, -2)\) and \((0, 2)\);
 Decreasing: \((2, 3)\); Constant: \((2, 0)\).

29. a. \(f\) has a local maximum of 3 at \(x = 0\).

b. \(f\) has a local minimum of 0 at both \(x = -2\) and \(x = 2\).

30. a. \(f\) has a local maximum of 2 at \(x = 0\).

b. \(f\) has a local minimum of 0 at both \(x = -1\) and \(x = 1\).

31. a. \(f\) has a local maximum of 1 at \(x = \frac{\pi}{2}\).

b. \(f\) has a local minimum of \(-1\) at \(x = -\frac{\pi}{2}\).

32. a. \(f\) has a local maximum of 1 at \(x = 0\).

b. \(f\) has a local minimum of \(-1\) both at \(x = -\pi\) and \(x = \pi\).

33. \(f(x) = 4x^3\)
 \(f(-x) = 4(-x)^3 = -4x^3 = -f(x)\)
 Therefore, \(f\) is odd.

34. \(f(x) = 2x^4 - x^2\)
 \(f(-x) = 2(-x)^4 - (-x)^2 = 2x^4 - x^2 = f(x)\)
 Therefore, \(f\) is even.

35. \(g(x) = -3x^2 - 5\)
 \(g(-x) = -3(-x)^2 - 5 = -3x^2 - 5 = g(x)\)
 Therefore, \(g\) is even.

36. \(h(x) = 3x^3 + 5\)
 \(h(-x) = 3(-x)^3 + 5 = -3x^3 + 5\)
 \(h\) is neither even nor odd.

37. \(F(x) = \sqrt{x}\)
 \(F(-x) = \sqrt{-x} = -\sqrt{x} = -F(x)\)
 Therefore, \(F\) is odd.

38. \(G(x) = \sqrt{x}\)
 \(G(-x) = \sqrt{-x}\)
 \(G\) is neither even nor odd.

39. \(f(x) = x + |x|\)
 \(f(-x) = -x + | -x | = -x + |x|\)
 \(f\) is neither even nor odd.

40. \(f(x) = \sqrt{2x^2 + 1}\)
 \(f(-x) = \sqrt{2(-x)^2 + 1} = \sqrt{2x^2 + 1} = f(x)\)
 Therefore, \(f\) is even.

41. \(g(x) = \frac{x^2 + 3}{x^2 - 1}\)
 \(g(-x) = \frac{(-x)^2 + 3}{(-x)^2 - 1} = \frac{x^2 + 3}{x^2 - 1} = g(x)\)
 Therefore, \(g\) is even.

42. \(h(x) = \frac{-x}{x^2 - 1}\)
 \(h(-x) = \frac{-(-x)}{(-x)^2 - 1} = \frac{-x}{x^2 - 1} = -h(x)\)
 Therefore, \(h\) is odd.

43. \(h(x) = \frac{-x^3}{3x^2 - 9}\)
 \(h(-x) = \frac{-(-x)^3}{3(-x)^2 - 9} = \frac{x^3}{3x^2 - 9} = -h(x)\)
 Therefore, \(h\) is odd.

44. \(F(x) = \frac{2x}{|x|}\)
 \(F(-x) = \frac{2(-x)}{| -x |} = \frac{-2x}{|x|} = -F(x)\)
 Therefore, \(F\) is odd.
45. \(f \) has an absolute maximum of 4 at \(x = 1 \).
 \(f \) has an absolute minimum of 1 at \(x = 5 \).

46. \(f \) has an absolute maximum of 4 at \(x = 4 \).
 \(f \) has an absolute minimum of 0 at \(x = 5 \).

47. \(f \) has an absolute minimum of 1 at \(x = 1 \).
 \(f \) has an absolute maximum of 4 at \(x = 3 \).

48. \(f \) has an absolute minimum of 1 at \(x = 0 \).
 \(f \) has no absolute maximum.

49. \(f \) has an absolute minimum of 0 at \(x = 0 \).
 \(f \) has no absolute maximum.

50. \(f \) has an absolute maximum of 4 at \(x = 2 \).
 \(f \) has no absolute minimum.

51. \(f \) has no absolute maximum or minimum.

52. \(f \) has no absolute maximum or minimum.

53. \(f(x) = x^3 - 3x + 2 \) on the interval \((-2, 2)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = x^3 - 3x + 2 \).

54. \(f(x) = x^3 - 3x^2 + 5 \) on the interval \((-1, 3)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = x^3 - 3x^2 + 5 \).

55. \(f(x) = x^4 - x^3 \) on the interval \((-2, 2)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = x^4 - x^3 \).

56. \(f(x) = x^3 - x^2 \) on the interval \((-2, 2)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = x^3 - x^2 \).
57. \(f(x) = -0.2x^3 - 0.6x^2 + 4x - 6 \) on the interval \((-6, 4)\).
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = -0.2x^3 - 0.6x^2 + 4x - 6 \).
 local maximum at: \((1.77, -1.91)\);
 local minimum at: \((-3.77, -18.89)\)
 \(f \) is increasing on: \((-3.77, 1.77)\);
 \(f \) is decreasing on: \((-6, -3.77)\) and \((1.77, 4)\)

58. \(f(x) = -0.4x^3 + 0.6x^2 + 3x - 2 \) on the interval \((-4, 5)\).
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = -0.4x^3 + 0.6x^2 + 3x - 2 \).
 local maximum at: \((2.16, 3.25)\);
 local minimum at: \((-1.16, -4.05)\)
 \(f \) is increasing on: \((-1.16, 2.16)\);
 \(f \) is decreasing on: \((-4, -1.16)\) and \((2.16, 5)\)

59. \(f(x) = 0.25x^4 + 0.3x^3 - 0.9x^2 + 3 \) on the interval \((-3, 2)\).
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = 0.25x^4 + 0.3x^3 - 0.9x^2 + 3 \).
 local maximum at: \((0, 3)\);
Chapter 2: Functions and Their Graphs

local minimum at: \((-1.87, 0.95), \ (0.97, 2.65)\)
f is increasing on: \((-1.87, 0)\) and \((0.97, 2)\);
f is decreasing on: \((-3, -1.87)\) and \((0, 0.97)\)

60. \(f(x) = -0.4x^4 - 0.5x^3 + 0.8x^2 - 2\) on the interval \((-3, 2)\)
Use MAXIMUM and MINIMUM on the graph of \(y_1 = -0.4x^4 - 0.5x^3 + 0.8x^2 - 2\).

local maxima at: \((-1.57, -0.52), \ (0.64, -1.87)\); local minimum at: \((0, -2)\)
f is increasing on: \((-3, -1.57)\) and \((0, 0.64)\); f is decreasing on: \((-1.57, 0)\) and \((0.64, 2)\)

61. \(f(x) = -2x^2 + 4\)
a. Average rate of change of \(f\) from \(x = 0\) to \(x = 2\):
\[
\frac{f(2) - f(0)}{2 - 0} = \frac{(-2(2)^2 + 4) - (-2(0)^2 + 4)}{2 - 0} = \frac{(-4) - (-4)}{2} = \frac{-8}{2} = -4
\]
b. Average rate of change of \(f\) from \(x = 1\) to \(x = 3\):
\[
\frac{f(3) - f(1)}{3 - 1} = \frac{(-2(3)^2 + 4) - (-2(1)^2 + 4)}{3 - 1} = \frac{-14 - (-2)}{2} = \frac{-12}{2} = -6
\]
c. Average rate of change of \(f\) from \(x = 1\) to \(x = 4\):
\[
\frac{f(4) - f(1)}{4 - 1} = \frac{(-2(4)^2 + 4) - (-2(1)^2 + 4)}{3} = \frac{-28 - 2}{3} = \frac{-30}{3} = -10
\]

62. \(f(x) = -x^3 + 1\)
a. Average rate of change of \(f\) from \(x = 0\) to \(x = 2\):
\[
\frac{f(2) - f(0)}{2 - 0} = \frac{(-2)^3 + 1 - (0)^3 + 1}{2 - 0} = \frac{-8 - 2}{2} = -5
\]
b. Average rate of change of \(f\) from \(x = 1\) to \(x = 3\):
\[
\frac{f(3) - f(1)}{3 - 1} = \frac{(-3)^3 + 1 - (-1)^3 + 1}{2} = \frac{-26 - 2}{2} = -14
\]
c. Average rate of change of \(f\) from \(x = -1\) to \(x = 1\):
\[
\frac{f(1) - f(-1)}{1 - (-1)} = \frac{(-1)^3 + 1 - (-(-1)^3 + 1)}{2} = \frac{0 - 2}{2} = -1
\]

63. \(g(x) = x^3 - 2x + 1\)
a. Average rate of change of \(g\) from \(x = -3\) to \(x = -2\):
\[
\frac{g(-2) - g(-3)}{-2 - (-3)} = \frac{(-2)^3 - 2(-2) + 1 - (-3)^3 - 2(-3) + 1}{1} = \frac{(-3) - (-20)}{1} = 17
\]
b. Average rate of change of \(g \) from \(x = -1 \) to \(x = 1 \):

\[
\frac{g(1) - g(-1)}{1 - (-1)} = \frac{[(1)^3 - 2(1) + 1] - [(-1)^3 - 2(-1) + 1]}{2} = \frac{(0) - (2)}{2} = \frac{-2}{2} = -1
\]

c. Average rate of change of \(g \) from \(x = 1 \) to \(x = 3 \):

\[
\frac{g(3) - g(1)}{3 - 1} = \frac{[(3)^3 - 2(3) + 1] - [(1)^3 - 2(1) + 1]}{2} = \frac{(22) - (0)}{2} = \frac{22}{2} = 11
\]

64. \(h(x) = x^2 - 2x + 3 \)

a. Average rate of change of \(h \) from \(x = -1 \) to \(x = 1 \):

\[
\frac{h(1) - h(-1)}{1 - (-1)} = \frac{[(1)^2 - 2(1) + 3] - [(-1)^2 - 2(-1) + 3]}{2} = \frac{(2) - (6)}{2} = \frac{-4}{2} = -2
\]

b. Average rate of change of \(h \) from \(x = 0 \) to \(x = 2 \):

\[
\frac{h(2) - h(0)}{2 - 0} = \frac{[(2)^2 - 2(2) + 3] - [(0)^2 - 2(0) + 3]}{2} = \frac{(3) - (3)}{2} = \frac{0}{2} = 0
\]

c. Average rate of change of \(h \) from \(x = 2 \) to \(x = 5 \):

\[
\frac{h(5) - h(2)}{5 - 2} = \frac{[(5)^2 - 2(5) + 3] - [(2)^2 - 2(2) + 3]}{3} = \frac{(18) - (3)}{3} = 5
\]

65. \(f(x) = 5x - 2 \)

a. Average rate of change of \(f \) from 1 to 3:

\[
\frac{\Delta y}{\Delta x} = \frac{f(3) - f(1)}{3 - 1} = \frac{13 - 3}{3 - 1} = \frac{10}{2} = 5
\]

Thus, the average rate of change of \(f \) from 1 to 3 is 5.

b. From (a), the slope of the secant line joining \((1, f(1))\) and \((3, f(3))\) is 5. We use the point-slope form to find the equation of the secant line:

\[
\begin{align*}
y - y_1 &= m_{sec}(x - x_1) \\
y - 3 &= 5(x - 1) \\
y &= 5x - 2
\end{align*}
\]

66. \(f(x) = -4x + 1 \)

a. Average rate of change of \(f \) from 2 to 5:

\[
\frac{\Delta y}{\Delta x} = \frac{f(5) - f(2)}{5 - 2} = \frac{-19 - (-7)}{5 - 2} = \frac{-12}{3} = -4
\]

Therefore, the average rate of change of \(f \) from 2 to 5 is -4.

b. From (a), the slope of the secant line joining \((2, f(2))\) and \((5, f(5))\) is -4. We use the point-slope form to find the equation of the secant line:

\[
\begin{align*}
y - y_1 &= m_{sec}(x - x_1) \\
y - (-7) &= -4(x - 2) \\
y &= -4x + 8
\end{align*}
\]

67. \(g(x) = x^2 - 2 \)

a. Average rate of change of \(g \) from \(-2 \) to \(1 \):

\[
\frac{\Delta y}{\Delta x} = \frac{g(1) - g(-2)}{1 - (-2)} = \frac{-1 - 2}{3} = -1
\]
Chapter 2: Functions and Their Graphs

Therefore, the average rate of change of g from -2 to 1 is -1.

b. From (a), the slope of the secant line joining $(-2, g(-2))$ and $(1, g(1))$ is -1. We use the point-slope form to find the equation of the secant line:

$$y - y_1 = m_{sec}(x - x_1)$$

$$y - 2 = -1(x - (-2))$$

$$y = -x - 2$$

$$y = -x$$

68. $g(x) = x^2 + 1$

a. Average rate of change of g from -1 to 2:

$$\frac{\Delta y}{\Delta x} = \frac{g(2) - g(-1)}{2 - (-1)} = \frac{5 - 2}{3} = \frac{3}{3} = 1$$

Therefore, the average rate of change of g from -1 to 2 is 1.

b. From (a), the slope of the secant line joining $(-1, g(-1))$ and $(2, g(2))$ is 1. We use the point-slope form to find the equation of the secant line:

$$y - y_1 = m_{sec}(x - x_1)$$

$$y - 2 = 1(x - (-1))$$

$$y = -x + 1$$

$$y = x + 3$$

69. $h(x) = x^2 - 2x$

a. Average rate of change of h from 2 to 4:

$$\frac{\Delta y}{\Delta x} = \frac{h(4) - h(2)}{4 - 2} = \frac{8 - 0}{2} = \frac{8}{2} = 4$$

Therefore, the average rate of change of h from 2 to 4 is 4.

b. From (a), the slope of the secant line joining $(2, h(2))$ and $(4, h(4))$ is 4. We use the point-slope form to find the equation of the secant line:

$$y - y_1 = m_{sec}(x - x_1)$$

$$y - 0 = 4(x - 2)$$

$$y = 4x - 8$$

70. $h(x) = -2x^2 + x$

a. Average rate of change from 0 to 3:

$$\frac{\Delta y}{\Delta x} = \frac{h(3) - h(0)}{3 - 0} = \frac{-15 - 0}{3} = \frac{-15}{3} = -5$$

Therefore, the average rate of change of h from 0 to 3 is -5.

b. From (a), the slope of the secant line joining $(0, h(0))$ and $(3, h(3))$ is -5. We use the point-slope form to find the equation of the secant line:

$$y - y_1 = m_{sec}(x - x_1)$$

$$y - 0 = -5(x - 0)$$

$$y = -5x$$

71. $g(x) = x^3 - 27x$

$$g(-x) = (-x)^3 - 27(-x) = -x^3 + 27x$$

Since $g(-x) = -g(x)$, the function is odd.

b. Since $g(x)$ is odd then it is symmetric about the origin so there exist a local maximum at $x = -3$.

$$g(-3) = (-3)^3 - 27(-3) = -27 + 81 = 54$$

So there is a local maximum of 54 at $x = -3$.

72. $f(x) = -x^3 + 12x$

a. $f(-x) = -(-x)^3 + 12(-x) = -x^3 - 12x$

$$= -(-x^3 + 12x) = -f(x)$$

Since $f(-x) = -f(x)$, the function is odd.

b. Since $f(x)$ is odd then it is symmetric about the origin so there exist a local maximum at $x = -3$.

$$f(-2) = -(-2)^3 + 12(-2) = 8 - 24 = -16$$

So there is a local maximum of -16 at $x = -2$.

73. $F(x) = -x^4 + 8x^2 + 8$
Section 2.3: Properties of Functions

74. \(G(x) = -x^4 + 32x^2 + 144 \)

a. \(G(-x) = -(-x)^4 + 32(-x)^2 + 144 \)
 \[= -x^4 + 32x^2 + 144\]
 \[= G(x)\]

Since \(G(-x) = G(x) \), the function is even.

b. Since the function is even, its graph has y-axis symmetry. The second local maximum is in quadrant II and is 24 and occurs at \(x = -2 \).

c. Because the graph has y-axis symmetry, the area under the graph between \(x = 0 \) and \(x = 3 \) bounded below by the x-axis is the same as the area under the graph between \(x = -3 \) and \(x = 0 \) bounded below the x-axis. Thus, the area is 47.4 square units.

76. \(C(t) = -0.002t^4 + 0.039t^3 - 0.285t^2 + 0.766t + 0.085 \)

Graph the function on a graphing utility and use the Maximum option from the CALC menu.

b. Use MINIMUM. Rounding to the nearest whole number, the average cost is minimized when approximately 10 lawnmowers are produced per hour.

c. The minimum average cost is approximately $239 per mower.
Chapter 2: Functions and Their Graphs

77. a.

b. The slope represents the average rate of change of the debt from 2000 to 2002.

c. \[
\text{avg. rate of change} = \frac{P(2002) - P(2000)}{2002 - 2000}
\]
\[
= \frac{6228 - 5674}{2}
\]
\[
= \frac{554}{2}
\]
\[
= \$277 \text{ billion}
\]

d. \[
\text{avg. rate of change} = \frac{P(2006) - P(2004)}{2006 - 2004}
\]
\[
= \frac{8507 - 7379}{2}
\]
\[
= \frac{1128}{2}
\]
\[
= \$564 \text{ billion}
\]

e. \[
\text{avg. rate of change} = \frac{P(2010) - P(2008)}{2010 - 2008}
\]
\[
= \frac{13562 - 10025}{2}
\]
\[
= \frac{3537}{2}
\]
\[
= \$1768.5 \text{ billion}
\]

c. The average rate of change is increasing as time passes.

78. a.

b. The slope represents the average rate of change of the population from 0 to 2.5 hours.

c. \[
\text{avg. rate of change} = \frac{P(2.5) - P(0)}{2.5 - 0}
\]
\[
= \frac{0.18 - 0.09}{2.5 - 0}
\]
\[
= \frac{0.09}{2.5}
\]
\[
= 0.036 \text{ gram per hour}
\]

d. The average rate of change is increasing as time passes.

79. \[f(x) = x^2\]

a. Average rate of change of \(f\) from \(x = 0\) to \(x = 1\):
\[
\frac{f(1) - f(0)}{1 - 0} = \frac{1^2 - 0^2}{1} = 1
\]

b. Average rate of change of \(f\) from \(x = 0\) to \(x = 0.5\):
\[
\frac{f(0.5) - f(0)}{0.5 - 0} = \frac{(0.5)^2 - 0^2}{0.5} = \frac{0.25}{0.5} = 0.5
\]

c. Average rate of change of \(f\) from \(x = 0\) to \(x = 0.1\):
\[
\frac{f(0.1) - f(0)}{0.1 - 0} = \frac{(0.1)^2 - 0^2}{0.1} = \frac{0.01}{0.1} = 0.1
\]
d. Average rate of change of \(f \) from \(x = 0 \) to \(x = 0.01 \):
\[
\frac{f(0.01) - f(0)}{0.01 - 0} = \frac{(0.01)^2 - 0^2}{0.01} = \frac{0.0001}{0.01} = 0.01
\]

e. Average rate of change of \(f \) from \(x = 0 \) to \(x = 0.001 \):
\[
\frac{f(0.001) - f(0)}{0.001 - 0} = \frac{(0.001)^2 - 0^2}{0.001} = \frac{0.000001}{0.001} = 0.001
\]
f. Graphing the secant lines:

g. The secant lines are beginning to look more and more like the tangent line to the graph of \(f \) at the point where \(x = 0 \).
h. The slopes of the secant lines are getting smaller and smaller. They seem to be approaching the number zero.

80. \(f(x) = x^2 \)

a. Average rate of change of \(f \) from \(x = 1 \) to \(x = 2 \):
\[
\frac{f(2) - f(1)}{2 - 1} = \frac{2^2 - 1^2}{1} = \frac{3}{1} = 3
\]
b. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.5 \):
\[
\frac{f(1.5) - f(1)}{1.5 - 1} = \frac{(1.5)^2 - 1^2}{0.5} = \frac{2.25 - 1}{0.5} = 2.5
\]
c. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.1 \):
\[
\frac{f(1.1) - f(1)}{1.1 - 1} = \frac{(1.1)^2 - 1^2}{0.1} = \frac{1.21 - 1}{0.1} = 2.1
\]
d. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.01 \):
\[
\frac{f(1.01) - f(1)}{1.01 - 1} = \frac{(1.01)^2 - 1^2}{0.01} = \frac{0.0201}{0.01} = 2.01
\]
e. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.001 \):
\[
\frac{f(1.001) - f(1)}{1.001 - 1} = \frac{(1.001)^2 - 1^2}{0.001} = \frac{0.002001}{0.001} = 2.001
\]
f. Graphing the secant lines:

![Graphs of functions](image)

- The secant lines are beginning to look more and more like the tangent line to the graph of \(f \) at the point where \(x = 1 \).
- The slopes of the secant lines are getting smaller and smaller. They seem to be approaching the number 2.

81. \(f(x) = 2x + 5 \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)

\[
= \frac{2(x+h) + 5 - 2x - 5}{h} = \frac{2h}{h} = 2
\]

b. When \(x = 1 \):
- \(h = 0.5 \Rightarrow m_{sec} = 2 \)
- \(h = 0.1 \Rightarrow m_{sec} = 2 \)
- \(h = 0.01 \Rightarrow m_{sec} = 2 \)

As \(h \to 0 \), \(m_{sec} \to 2 \)

c. Using the point \((1, f(1)) = (1,7)\) and slope, \(m = 2 \), we get the secant line:
\[
\begin{align*}
y - 7 &= 2(x - 1) \\
y &= 2x + 5
\end{align*}
\]

d. Graphing:

![Graph of function](image)

The graph and the secant line coincide.

82. \(f(x) = -3x + 2 \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)

\[
= \frac{-3(x+h) + 2 - (-3x + 2)}{h} = -\frac{3h}{h} = -3
\]

b. When \(x = 1 \):
- \(h = 0.5 \Rightarrow m_{sec} = -3 \)
- \(h = 0.1 \Rightarrow m_{sec} = -3 \)
- \(h = 0.01 \Rightarrow m_{sec} = -3 \)

As \(h \to 0 \), \(m_{sec} \to -3 \)

c. Using point \((1, f(1)) = (1,1)\) and slope \(-3\), we get the secant line:
\[
\begin{align*}
y - 1 &= -3(x - 1) \\
y + 1 &= -3x + 3 \\
y &= -3x + 2
\end{align*}
\]

d. Graphing:

![Graph of function](image)

The graph and the secant line coincide.
83. \(f(x) = x^2 + 2x \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)
\[\begin{align*}
&= \frac{(x+h)^2 + 2(x+h) - (x^2 + 2x)}{h} \\
&= \frac{x^2 + 2xh + h^2 + 2x + 2h - x^2 - 2x}{h} \\
&= \frac{2xh + h^2 + 2h}{h} \\
&= 2x + h + 2
\end{align*} \]

b. When \(x = 1 \),
\[\begin{align*}
h = 0.5 &\Rightarrow m_{sec} = 2 \cdot 1 + 0.5 + 2 = 4.5 \\
h = 0.1 &\Rightarrow m_{sec} = 2 \cdot 1 + 0.1 + 2 = 4.1 \\
h = 0.01 &\Rightarrow m_{sec} = 2 \cdot 1 + 0.01 + 2 = 4.01 \\
&\quad \text{as } h \to 0, \quad m_{sec} \to 2 \cdot 1 + 0 + 2 = 4
\end{align*} \]

c. Using point \((1, f(1)) = (1,3)\) and slope = 4.01, we get the secant line:
\[\begin{align*}
y - 3 &= 4.01(x - 1) \\
y - 3 &= 4.01x - 4.01 \\
y &= 4.01x - 1.01
\end{align*} \]

d. Graphing:

84. \(f(x) = 2x^2 + x \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)
\[\begin{align*}
&= \frac{2(x+h)^2 + (x+h) - (2x^2 + x)}{h} \\
&= \frac{2(x^2 + 2xh + h^2) + x + h - 2x^2 - x}{h} \\
&= \frac{2x^2 + 4xh + 2h^2 + x + h - 2x^2 - x}{h} \\
&= \frac{4xh + 2h^2 + h}{h} \\
&= 4x + 2h + 1
\end{align*} \]

b. When \(x = 1 \),
\[\begin{align*}
h = 0.5 &\Rightarrow m_{sec} = 4 \cdot 1 + 2(0.5) + 1 = 6 \\
h = 0.1 &\Rightarrow m_{sec} = 4 \cdot 1 + 2(0.1) + 1 = 5.2 \\
h = 0.01 &\Rightarrow m_{sec} = 4 \cdot 1 + 2(0.01) + 1 = 5.02 \\
&\quad \text{as } h \to 0, \quad m_{sec} \to 4 \cdot 1 + 2(0) + 1 = 5
\end{align*} \]

c. Using point \((1, f(1)) = (1,0)\) and slope = 1.02, we get the secant line:
\[\begin{align*}
y - 0 &= 1.02(x - 1) \\
y &= 1.02x - 1.02
\end{align*} \]

85. \(f(x) = 2x^2 - 3x + 1 \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)
\[\begin{align*}
&= \frac{2(x+h)^2 - 3(x+h) + 1 - (2x^2 - 3x + 1)}{h} \\
&= \frac{2(x^2 + 2xh + h^2) - 3x - 3h + 1 - 2x^2 + 3x - 1}{h} \\
&= \frac{2x^2 + 4xh + 2h^2 - 3x - 3h + 1 - 2x^2 + 3x - 1}{h} \\
&= \frac{4xh + 2h^2 - 3h}{h} \\
&= 4x + 2h - 3
\end{align*} \]

b. When \(x = 1 \),
\[\begin{align*}
h = 0.5 &\Rightarrow m_{sec} = 4 \cdot 1 + 2(0.5) - 3 = 2 \\
h = 0.1 &\Rightarrow m_{sec} = 4 \cdot 1 + 2(0.1) - 3 = 1.2 \\
h = 0.01 &\Rightarrow m_{sec} = 4 \cdot 1 + 2(0.01) - 3 = 1.02 \\
&\quad \text{as } h \to 0, \quad m_{sec} \to 4 \cdot 1 + 2(0) - 3 = 1
\end{align*} \]

c. Using point \((1, f(1)) = (1,0)\) and slope = 1.02, we get the secant line:
\[\begin{align*}
y - 0 &= 1.02(x - 1) \\
y &= 1.02x - 1.02
\end{align*} \]
Chapter 2: Functions and Their Graphs

86. \(f(x) = -x^2 + 3x - 2 \)

a. \(m_{\text{sec}} = \frac{f(x+h) - f(x)}{h} \)

\[
= \frac{-(x+h)^2 + 3(x+h) - 2 - (-x^2 + 3x - 2)}{h} \\
= \frac{-x^2 - 2xh - h^2 + 3x + 3h - 2 + x^2 - 3x + 2}{h} \\
= \frac{-2xh - h^2 + 3h}{h} \\
= -2x - h + 3
\]

b. When \(x = 1 \),

\(h = 0.5 \Rightarrow m_{\text{sec}} = \frac{1}{1.5} = -\frac{2}{3} = -0.667 \)

\(h = 0.1 \Rightarrow m_{\text{sec}} = \frac{1}{1.1} = -\frac{10}{11} = -0.909 \)

\(h = 0.01 \Rightarrow m_{\text{sec}} = \frac{1}{1.01} = -\frac{100}{101} = -0.990 \)

as \(h \to 0, \quad m_{\text{sec}} \to -\frac{1}{(1+0)(1)} = -\frac{1}{1} = -1 \)

c. Using point \((1, f(1)) = (1,1)\) and slope = 0.99, we get the secant line:

\[
y - 0 = 0.99(x - 1) \\
y = 0.99x - 0.99
\]

d. Graphing:

87. \(f(x) = \frac{1}{x} \)

a. \(m_{\text{sec}} = \frac{f(x+h) - f(x)}{h} \)

\[
= \frac{1}{x+h} - \frac{1}{x} = \frac{(x-(x+h))}{(x+h)x} \\
= \frac{1}{x+h} \left(1 + \frac{-h}{(x+h)x}\right) \\
= -\frac{1}{(x+h)x}
\]

b. When \(x = 1 \),

\(h = 0.5 \Rightarrow m_{\text{sec}} = -\frac{1}{(1+0.5)(1)} = -\frac{2}{3} = -0.667 \)

\(h = 0.1 \Rightarrow m_{\text{sec}} = -\frac{1}{(1+0.1)(1)} = -\frac{10}{11} = -0.909 \)

\(h = 0.01 \Rightarrow m_{\text{sec}} = -\frac{1}{(1+0.01)(1)} = -\frac{100}{101} = -0.990 \)

as \(h \to 0, \quad m_{\text{sec}} \to -\frac{1}{(1+0)(1)} = -\frac{1}{1} = -1 \)

c. Using point \((1, f(1)) = (1,1)\) and slope = -\(\frac{100}{101}\), we get the secant line:

\[
y - 1 = -\frac{100}{101}(x-1) \\
y = -\frac{100}{101}x + \frac{100}{101} \\
y = -\frac{100}{101}x + \frac{201}{101}
\]

d. Graphing:
88. \(f(x) = \frac{1}{x^2} \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)
 \[= \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h} \]
 \[= \frac{x^2 - (x+h)^2}{h \cdot (x+h)^2 \cdot x^2} \]
 \[= \frac{x^2 - (x^2 + 2xh + h^2)}{h \cdot (x+h)^2 \cdot x^2} \]
 \[= \frac{-2x - h}{(x+h)^2 \cdot x^2} \]
 \[= \frac{-2x}{(x+h)^2 \cdot x^2} - \frac{h}{(x+h)^2 \cdot x^2} \]

b. When \(x = 1 \),

 \[h = 0.5 \Rightarrow m_{sec} = \frac{-2 \cdot 1 - 0.5}{(1+0.5)^2 \cdot 1^2} = \frac{-0.5}{1.5^2} = -\frac{10}{9} = -1.111 \]

 \[h = 0.1 \Rightarrow m_{sec} = \frac{-2 \cdot 1 - 0.1}{(1+0.1)^2 \cdot 1^2} = \frac{-0.1}{1.1^2} = -\frac{210}{121} = -1.7355 \]

 \[h = 0.01 \Rightarrow m_{sec} = \frac{-2 \cdot 1 - 0.01}{(1+0.01)^2 \cdot 1^2} \]
 \[= \frac{-0.01}{1.02^2} = -\frac{20,100}{10,404} = -1.9704 \]

 as \(h \to 0, \ m_{sec} \to \frac{-2 \cdot 1}{(1+0)^2 \cdot 1^2} = -2 \)

c. Using point \((1, f(1)) = (1,1)\) and
 slope \(= -1.9704\), we get the secant line:
 \[y - 1 = -1.9704(x - 1) \]
 \[y - 1 = -1.9704x + 1.9704 \]
 \[y = -1.9704x + 2.9704 \]

d. Graphing:

89. Answers will vary. One possibility follows:

90. Answers will vary. See solution to Problem 89 for one possibility.

91. A function that is increasing on an interval can have at most one \(x \)-intercept on the interval. The graph of \(f \) could not "turn" and cross it again or it would start to decrease.

92. An increasing function is a function whose graph goes up as you read from left to right.
A decreasing function is a function whose graph goes down as you read from left to right.

93. To be an even function we need \(f(-x) = f(x) \) and to be an odd function we need \(f(-x) = -f(x) \). In order for a function to be both even and odd, we would need \(f(x) = -f(x) \). This is only possible if \(f(x) = 0 \).

94. The graph of \(y = 5 \) is a horizontal line.

95. Not necessarily. It just means \(f(5) > f(2) \). The function could have both increasing and decreasing intervals.

96. \[
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{b-b}{x_2 - x_1} = 0
\]
\[
f(2) - f(-2) = 0 - 0 = 0
\]

97 – 98. Interactive Exercises
Section 2.4: Library of Functions; Piecewise-defined Functions

9. C
10. A
11. E
12. G
13. B
14. D
15. F
16. H
17. $f(x) = x$
18. $f(x) = x^2$
19. $f(x) = x^3$
20. $f(x) = \sqrt{x}$
21. $f(x) = \frac{1}{x}$
22. $f(x) = |x|$
23. $f(x) = \sqrt[3]{x}$
Chapter 2: Functions and Their Graphs

24. \(f(x) = 3 \)

![Graph of \(f(x) = 3 \)](image)

25. a. \(f(-2) = (-2)^2 = 4 \)

b. \(f(0) = 2 \)

c. \(f(2) = 2(2) + 1 = 5 \)

26. a. \(f(-2) = -3(-2) = 6 \)

b. \(f(-1) = 0 \)

c. \(f(0) = 2(0)^2 + 1 = 1 \)

27. a. \(f(0) = 2(0) - 4 = -4 \)

b. \(f(1) = 2(1) - 4 = -2 \)

c. \(f(2) = 2(2) - 4 = 0 \)

d. \(f(3) = (3)^3 - 2 = 25 \)

28. a. \(f(-1) = (-1)^3 = -1 \)

b. \(f(0) = (0)^3 = 0 \)

c. \(f(1) = 3(1) + 2 = 5 \)

d. \(f(3) = 3(3) + 2 = 11 \)

29. \(f(x) = \begin{cases} 2x & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)

 a. Domain: \(\{x \mid x \text{ is any real number}\} \)

b. \(x\)-intercept: none

 y-intercept: \(f(0) = 1 \)

 The only intercept is \((0,1)\).

c. Graph:

![Graph of \(f(x) \)](image)

d. Range: \(\{y \mid y \neq 0\} \cup (-\infty, 0) \cup (0, \infty) \)

e. The graph is not continuous. There is a jump at \(x = 0 \).

30. \(f(x) = \begin{cases} 3x & \text{if } x \neq 0 \\ 4 & \text{if } x = 0 \end{cases} \)

 a. Domain: \(\{x \mid x \text{ is any real number}\} \)

b. \(x\)-intercept: none

 y-intercept: \(f(0) = 4 \)

 The only intercept is \((0,4)\).

c. Graph:

![Graph of \(f(x) \)](image)

d. Range: \(\{y \mid y \neq 0\} \cup (-\infty, 0) \cup (0, \infty) \)

e. The graph is not continuous. There is a jump at \(x = 0 \).

31. \(f(x) = \begin{cases} -2x + 3 & \text{if } x < 1 \\ 3x - 2 & \text{if } x \geq 1 \end{cases} \)

 a. Domain: \(\{x \mid x \text{ is any real number}\} \)
b. x-intercept: none
y-intercept: $f (0) = -2(0) + 3 = 3$

The only intercept is $(0, 3)$.

c. Graph:

\[\text{Graph:} \]

\[\begin{array}{c}
(0, 3) \\
(1, 1) \\
(-5, -5) \\
5
\end{array} \]

\[\begin{array}{c}
(2, 4) \\
1
\end{array} \]

d. Range: $\{ y \mid y \geq 1 \}$; $[1, \infty)$

e. The graph is continuous. There are no holes or gaps.

32. $f(x) = \begin{cases}
 x + 3 & \text{if } x < -2 \\
 -2x - 3 & \text{if } x \geq -2
\end{cases}$

a. Domain: $\{ x \mid x$ is any real number $\}$

b. $x + 3 = 0$
$-2x - 3 = 0$
$x = -3$
$-2x = 3$
$x = -\frac{3}{2}$

x-intercepts: $-3, -\frac{3}{2}$

y-intercept: $f (0) = -2(0) - 3 = -3$

The intercepts are $(-3, 0), \left(-\frac{3}{2}, 0 \right)$, and $(0, -3)$.

c. Graph:

\[\text{Graph:} \]

\[\begin{array}{c}
(-2, 1) \\
(-3, 0) \\
(0, -3) \\
(-5, -5) \\
5
\end{array} \]

d. Range: $\{ y \mid y \leq 1 \}$; $(-\infty, 1]$

e. The graph is continuous. There are no holes or gaps.

33. $f(x) = \begin{cases}
 x + 3 & \text{if } -2 \leq x < 1 \\
 -x + 2 & \text{if } x > 1
\end{cases}$

a. Domain: $\{ x \mid x \geq -2 \}; [-2, \infty)$

b. $x + 3 = 0$
$-x + 2 = 0$
$x = -3$
$-x = -2$
$x = 2$ (not in domain)

x-intercept: 2

y-intercept: $f (0) = 0 + 3 = 3$

The intercepts are $(2, 0)$ and $(0, 3)$.

c. Graph:

\[\text{Graph:} \]

\[\begin{array}{c}
(1, 5) \\
(-2, 1) \\
(1, 1) \\
(-5, -5) \\
5
\end{array} \]

d. Range: $\{ y \mid y < 4, \ y = 5 \}; (-\infty, 4) \cup \{5\}$

e. The graph is not continuous. There is a jump at $x = 1$.

34. $f(x) = \begin{cases}
 2x + 5 & \text{if } -3 \leq x < 0 \\
 -3 & \text{if } x = 0 \\
 -5x & \text{if } x > 0
\end{cases}$

a. Domain: $\{ x \mid x \geq -3 \}; [-3, \infty)$

b. $2x + 5 = 0$
$-5x = 0$
$2x = -5$
$x = 0$ (not in domain of piece)

x-intercept: $-\frac{5}{2}$

y-intercept: $f (0) = -3$

The intercepts are $\left(-\frac{5}{2}, 0 \right)$ and $(0, -3)$.
Chapter 2: Functions and Their Graphs

c. Graph:

\[
\begin{array}{c}
\text{(0, 5)} \\
\text{(-3, -1)} \\
\text{(0, -3)} \\
\text{(1, -5)} \\
\end{array}
\]

d. Range: \(\{y \mid y < 5\}; (-\infty, 5)\)

e. The graph is not continuous. There is a jump at \(x = 0\).

35. \(f(x) = \begin{cases}
1 + x & \text{if } x < 0 \\
x^2 & \text{if } x \geq 0
\end{cases}\)

a. Domain: \(\{x \mid x \text{ is any real number}\}\)

b. \(1 + x = 0 \quad x^2 = 0\)

\(x = -1 \quad x = 0\)

x-intercepts: -1, 0

y-intercept: \(f(0) = 0^2 = 0\)

The intercepts are \((-1, 0)\) and \((0, 0)\).

c. Graph:

\[
\begin{array}{c}
\text{(0, 1)} \\
\text{(-1, 0)} \\
\text{(1, 1)} \\
\text{(0, 0)} \\
\end{array}
\]

d. Range: \(\{y \mid y \text{ is any real number}\}\)

e. The graph is not continuous. There is a jump at \(x = 0\).

36. \(f(x) = \begin{cases}
\frac{1}{x} & \text{if } x < 0 \\
\sqrt[3]{x} & \text{if } x \geq 0
\end{cases}\)

a. Domain: \(\{x \mid x \text{ is any real number}\}\)

b. \(\frac{1}{x} = 0 \quad \sqrt[3]{x} = 0\)

(no solution) \(\quad x = 0\)

x-intercept: 0

y-intercept: \(f(0) = \sqrt[3]{0} = 0\)

The only intercept is \((0, 0)\).

c. Graph:

\[
\begin{array}{c}
\text{(-2, 2)} \\
\text{(-1, 1)} \\
\text{(2, 0)} \\
\end{array}
\]

d. Range: \(\{y \mid y > 0\}; (0, \infty)\)
Section 2.4: Library of Functions; Piecewise-defined Functions

38. \(f(x) = \begin{cases} 2 - x & \text{if } -3 \leq x < 1 \\ \sqrt{x} & \text{if } x > 1 \end{cases} \)

a. Domain: \(\{ x \mid -3 \leq x < 1 \} \) or \(\{ x \mid x \geq -3, x \neq 1 \} \); \([-3,1) \cup (1,\infty) \).

b. \(2 - x = 0 \) \(\sqrt{x} = 0 \)
\(x = 2 \) \(x = 0 \)
\((\text{not in domain of piece}) \)
no \(x \)-intercepts
\(y \)-intercept: \(f(0) = 2 - 0 = 2 \)
The intercept is \((0,2) \).

c. Graph:

d. Range: \(\{ y \mid y > 1 \} ; (1,\infty) \)

e. The graph is not continuous. There is a hole at \(x = 1 \).

39. \(f(x) = 2 \text{int}(x) \)

a. Domain: \(\{ x \mid x \text{ is any real number} \} \)

b. \(x \)-intercepts:
All values for \(x \) such that \(0 \leq x < 1 \).
\(y \)-intercept: \(f(0) = 2 \text{int}(0) = 0 \)
The intercepts are all ordered pairs \((x,0) \) when \(0 \leq x < 1 \).

c. Graph:

d. Range: \(\{ y \mid y \text{ is an even integer} \} \)

e. The graph is not continuous. There is a jump at each integer value of \(x \).

40. \(f(x) = \text{int}(2x) \)

a. Domain: \(\{ x \mid x \text{ is any real number} \} \)

b. \(x \)-intercepts:
All values for \(x \) such that \(0 \leq x < \frac{1}{2} \).
\(y \)-intercept: \(f(0) = \text{int}(2(0)) = \text{int}(0) = 0 \)
The intercepts are all ordered pairs \((x,0) \) when \(0 \leq x < \frac{1}{2} \).

c. Graph:

d. Range: \(\{ y \mid y \text{ is an integer} \} \)

e. The graph is not continuous. There is a jump at each \(x = \frac{k}{2} \), where \(k \) is an integer.

41. Answers may vary. One possibility follows:
\(f(x) = \begin{cases} -x & \text{if } -1 \leq x \leq 0 \\ \frac{1}{2}x & \text{if } 0 < x \leq 2 \end{cases} \)

42. Answers may vary. One possibility follows:
\(f(x) = \begin{cases} x & \text{if } -1 \leq x \leq 0 \\ 1 & \text{if } 0 < x \leq 2 \end{cases} \)
43. Answers may vary. One possibility follows:
 \[f(x) = \begin{cases}
 -x & \text{if } x \leq 0 \\
 -x + 2 & \text{if } 0 < x \leq 2
 \end{cases} \]

44. Answers may vary. One possibility follows:
 \[f(x) = \begin{cases}
 2x + 2 & \text{if } -1 \leq x < 0 \\
 x & \text{if } x > 0
 \end{cases} \]

45. a. \(f(1.2) = \text{int}(2(1.2)) = \text{int}(2.4) = 2 \)
 b. \(f(1.6) = \text{int}(2(1.6)) = \text{int}(3.2) = 3 \)
 c. \(f(-1.8) = \text{int}(2(-1.8)) = \text{int}(-3.6) = -4 \)

46. a. \(f(1.2) = \text{int}\left(\frac{1.2}{2}\right) = \text{int}(0.6) = 0 \)
 b. \(f(1.6) = \text{int}\left(\frac{1.6}{2}\right) = \text{int}(0.8) = 0 \)
 c. \(f(-1.8) = \text{int}\left(-\frac{1.8}{2}\right) = \text{int}(-0.9) = -1 \)

47. \[C = \begin{cases}
 39.99 & \text{if } 0 < x \leq 450 \\
 0.45x - 162.51 & \text{if } x > 450
 \end{cases} \]

 a. \(C(200) = 39.99 \)

 b. \(C(465) = 0.45(465) - 162.51 = 46.74 \)

 c. \(C(451) = 0.45(451) - 162.51 = 40.44 \)

48. \(F(x) = \begin{cases}
 2 & \text{if } 0 < x \leq 1 \\
 4 & \text{if } 1 < x \leq 3 \\
 10 & \text{if } 3 < x \leq 4 \\
 5 \text{int}(x + 1) + 2 & \text{if } 4 < x < 9 \\
 51 & \text{if } 9 \leq x \leq 24
 \end{cases} \)

 a. \(F(2) = 4 \)
 Parking for 2 hours costs $4.

 b. \(F(7) = 5 \text{int}(7 + 1) + 2 = 42 \)
 Parking for 7 hours costs $42.

 c. \(F(15) = 51 \)
 Parking for 15 hours costs $51.

49. a. Charge for 50 therms:
 \[C = 18.95 + 0.5038(50) + 0.33372(50) \]
 \[= 60.83 \]

 b. Charge for 500 therms:
 \[C = 18.95 + 0.5038(500) + 0.12360(450) + 0.33372(50) \]
 \[= 343.16 \]

 c. For \(0 \leq x \leq 50 \):
 \[C = 18.95 + 0.33372x + 0.5038x \]
 \[= 0.83752x + 18.95 \]

 For \(x > 50 \):
 \[C = 18.95 + 0.33372(50) + 0.12360(x - 50) + 0.5038x \]
 \[= 18.95 + 16.686 + 0.12360x - 6.18 + 0.5038x \]
 \[= 0.6274x + 29.456 \]

 The monthly charge function:
 \[C = \begin{cases}
 0.83752x + 18.95 & \text{for } 0 \leq x \leq 50 \\
 0.6274x + 29.456 & \text{for } x > 50
 \end{cases} \]

50. a. Charge for 40 therms:
 \[C = 13.55 + 0.1473(20) + 0.0579(20) + 0.51(40) \]
 \[= 38.05 \]
Section 2.4: Library of Functions; Piecewise-defined Functions

b. Charge for 100 therms:
 \[C = 13.55 + 0.1473 \cdot 20 + 0.0579 \cdot 30 + 0.0519 \cdot 100 + 0.51 \cdot 150 \]
 \[= 99.92 \]

c. For \(0 \leq x \leq 20 \):
 \[C = 13.55 + 0.1473 \cdot x + 0.51 \cdot x \]
 \[= 0.6573 \cdot x + 13.55 \]
For \(20 < x \leq 50 \):
 \[C = 13.55 + 0.1473 \cdot (20 + 0.0579 \cdot (x-20)) + 0.51 \cdot x \]
 \[= 13.55 + 2.946 + 0.0579 \cdot x - 1.158 + 0.51 \cdot x \]
 \[= 0.5679 \cdot x + 15.388 \]
For \(x > 50 \):
 \[C = 13.55 + 0.1473 \cdot (20 + 0.0579 \cdot 30) + 0.0519 \cdot (x-50) + 0.51 \cdot x \]
 \[= 13.55 + 2.946 + 1.737 + 0.0519 \cdot x - 2.595 + 0.51 \cdot x \]
 \[= 0.5619 \cdot x + 15.638 \]

The monthly charge function:

\[C(x) = \begin{cases}
0.6573x + 13.55 & \text{if } 0 \leq x \leq 20 \\
0.5679x + 15.388 & \text{if } 20 < x \leq 50 \\
0.5619x + 15.638 & \text{if } x > 50
\end{cases} \]

51. For schedule X:
 \[f(x) = \begin{cases}
0.10x & \text{if } 0 < x \leq 8500 \\
850.00 + 0.15(x-8500) & \text{if } 8500 < x \leq 34,500 \\
4750.00 + 0.25(x-34,500) & \text{if } 34,500 < x \leq 83,600 \\
17,025.00 + 0.28(x-83,600) & \text{if } 83,600 < x \leq 174,400 \\
42,449.00 + 0.33(x-174,400) & \text{if } 174,400 < x \leq 379,150 \\
110,016.50 + 0.35(x-379,150) & \text{if } x > 379,150
\end{cases} \]

52. For Schedule Y – 1:
 \[f(x) = \begin{cases}
0.10x & \text{if } 0 < x \leq 17,000 \\
1700.00 + 0.15(x-17,000) & \text{if } 17,000 < x \leq 69,000 \\
9500.00 + 0.25(x-69,000) & \text{if } 69,000 < x \leq 139,350 \\
27,087.50 + 0.28(x-139,350) & \text{if } 139,350 < x \leq 212,300 \\
47,513.50 + 0.33(x-212,300) & \text{if } 212,300 < x \leq 379,150 \\
102,574.00 + 0.35(x-379,150) & \text{if } x > 379,150
\end{cases} \]
Chapter 2: Functions and Their Graphs

53. a. Let x represent the number of miles and C be the cost of transportation.

$$C(x) = \begin{cases}
0.50x & \text{if } 0 \leq x \leq 100 \\
0.50(100) + 0.40(x-100) & \text{if } 100 < x \leq 400 \\
0.50(100) + 0.40(300) + 0.25(x-400) & \text{if } 400 < x \leq 800 \\
0.50(100) + 0.40(300) + 0.25(400) + 0(x-800) & \text{if } 800 < x \leq 960
\end{cases}$$

b. For hauls between 100 and 400 miles the cost is: $C(x) = 0.50x$.

c. For hauls between 400 and 800 miles the cost is: $C(x) = 0.50x + 10 + 0.40x$.

54. Let $x =$ number of days car is used. The cost of renting is given by

$$C(x) = \begin{cases}
95 & \text{if } x = 7 \\
119 & \text{if } 7 < x \leq 8 \\
143 & \text{if } 8 < x \leq 9 \\
167 & \text{if } 9 < x \leq 10 \\
190 & \text{if } 10 < x \leq 14
\end{cases}$$
55. a. Let \(s \) be the credit score of an individual who wishes to borrow $300,000 with an 80% LTV ratio. The adverse market delivery charge is given by

\[
C(s) = \begin{cases}
9750 & \text{if } s \leq 659 \\
8250 & \text{if } 660 \leq s \leq 679 \\
4500 & \text{if } 680 \leq s \leq 699 \\
3000 & \text{if } 700 \leq s \leq 719 \\
1500 & \text{if } 720 \leq s \leq 739 \\
750 & \text{if } s \geq 740
\end{cases}
\]

\[W = 33 - \frac{(10.45 + 10\sqrt{5} - 5)(33 - (-10))}{22.04}
\approx -21^\circ C \]

c. \[W = 33 - \frac{(10.45 + 10\sqrt{15} - 15)(33 - (-10))}{22.04}
\approx -34^\circ C \]

56. Let \(x \) be the amount of the bill in dollars. The minimum payment due is given by

\[f(x) = \begin{cases}
x & \text{if } 0 \leq x < 10 \\
10 & \text{if } 10 \leq x < 500 \\
30 & \text{if } 500 \leq x < 1000 \\
50 & \text{if } 1000 \leq x < 1500 \\
70 & \text{if } x \geq 1500
\end{cases} \]

57. a. \(W = 10^\circ C \)

b. \[W = 33 - \frac{(10.45 + 10\sqrt{5} - 5)(33 - (-10))}{22.04} = 4^\circ C \]

c. \[W = 33 - \frac{(10.45 + 10\sqrt{15} - 15)(33 - (-10))}{22.04} = -3^\circ C \]

d. \[W = 33 - 1.5958(33 - (-10)) = -4^\circ C \]

e. When \(0 \leq v < 1.79 \), the wind speed is so small that there is no effect on the temperature.

f. When the wind speed exceeds 20, the wind chill depends only on the air temperature.

58. a. \(W = -10^\circ C \)
Chapter 2: Functions and Their Graphs

61. Each graph is that of \(y = x^2 \), but shifted horizontally.

\[
\begin{align*}
-6 & \quad -5 & \quad -4 & \quad -3 & \quad -2 & \quad -1 & \quad 0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 \\
\text{y} & \quad \text{x}
\end{align*}
\]

The graph of \(y = -|x| \) is the reflection of the graph of \(y = |x| \) about the x-axis.

62. Each graph is that of \(y = |x| \), but either compressed or stretched vertically.

\[
\begin{align*}
-6 & \quad -5 & \quad -4 & \quad -3 & \quad -2 & \quad -1 & \quad 0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 \\
\text{y} & \quad \text{x}
\end{align*}
\]

Multiplying a function by \(-1\) causes the graph to be a reflection about the x-axis of the original function's graph.

63. The graph of \(y = -x^2 \) is the reflection of the graph of \(y = x^2 \) about the x-axis.

64. The graph of \(y = \sqrt{-x} \) is the reflection about the y-axis of the graph of \(y = \sqrt{x} \).

\[
\begin{align*}
-5 & \quad -4 & \quad -3 & \quad -2 & \quad -1 & \quad 0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 \\
\text{y} & \quad \text{x}
\end{align*}
\]

The same type of reflection occurs when graphing \(y = 2x + 1 \) and \(y = 2(-x) + 1 \).

65. The graph of \(y = (x - 1)^3 + 2 \) is a shifting of the graph of \(y = x^3 \) one unit to the right and two
Section 2.5: Graphing Techniques: Transformations

66. The graphs of $y = x^n$, n a positive even integer, are all U-shaped and open upward. All go through the points $(-1,1)$, $(0,0)$, and $(1,1)$. As n increases, the graph of the function is narrower for $|x| > 1$ and flatter for $|x| < 1$.

67. The graphs of $y = x^n$, n a positive odd integer, all have the same general shape. All go through the points $(-1,-1)$, $(0,0)$, and $(1,1)$. As n increases, the graph of the function increases at a greater rate for $|x| > 1$ and is flatter around 0 for $|x| < 1$.

68. $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

Yes, it is a function.

Domain = $\{x \mid x \text{ is any real number}\}$ or $(-\infty, \infty)$

Range = $\{0, 1\}$ or $\{y \mid y = 0 \text{ or } y = 1\}$

y-intercept: $x = 0 \Rightarrow x$ is rational $\Rightarrow y = 1$

So the y-intercept is $y = 1$.

x-intercept: $y = 0 \Rightarrow x$ is irrational

So the graph has infinitely many x-intercepts, namely, there is an x-intercept at each irrational value of x.

$f(-x) = 1 = f(x)$ when x is rational;

$f(-x) = 0 = f(x)$ when x is irrational.

Thus, f is even.

The graph of f consists of 2 infinite clusters of distinct points, extending horizontally in both directions. One cluster is located 1 unit above the x-axis, and the other is located along the x-axis.

69. For $0 < x < 1$, the graph of $y = x^r$, r rational and $r > 0$, flattens down toward the x-axis as r gets bigger. For $x > 1$, the graph of $y = x^r$ increases at a greater rate as r gets bigger.

Section 2.5

1. horizontal; right
2. y
3. vertical; up
4. True; the graph of $y = -f(x)$ is the reflection about the x-axis of the graph of $y = f(x)$.
5. False; to obtain the graph of $y = f(x+2) - 3$ you shift the graph of $y = f(x)$ to the left 2 units and down 3 units.
6. True
7. B
8. E
9. H
10. D
11. I
12. A
13. L
14. C
15. F
16. J
17. \(G \)
18. \(K \)
19. \(y = (x - 4)^3 \)
20. \(y = (x + 4)^3 \)
21. \(y = x^3 + 4 \)
22. \(y = x^3 - 4 \)
23. \(y = (-x)^3 = -x^3 \)
24. \(y = -x^3 \)
25. \(y = 4x^3 \)
26. \(y = \left(\frac{1}{4}x \right)^3 = \frac{1}{64}x^3 \)
27. (1) \(y = \sqrt{x} + 2 \)
 (2) \(y = -\left(\sqrt{x} + 2 \right) \)
 (3) \(y = -\left(\sqrt{-x} + 2 \right) = -\sqrt{-x} - 2 \)
28. (1) \(y = -\sqrt{x} \)
 (2) \(y = -\sqrt{x - 3} \)
 (3) \(y = -\sqrt{x - 3} - 2 \)
29. (1) \(y = -\sqrt{x} \)
 (2) \(y = -\sqrt{x + 2} \)
 (3) \(y = -\sqrt{x + 3} + 2 \)
30. (1) \(y = \sqrt{x} + 2 \)
 (2) \(y = \sqrt{-x} + 2 \)
 (3) \(y = \sqrt{-(x + 3)} + 2 = \sqrt{-x - 3} + 2 \)
31. (c); To go from \(y = f(x) \) to \(y = -f(x) \) we reflect about the \(x \)-axis. This means we change the sign of the \(y \)-coordinate for each point on the graph of \(y = f(x) \). Thus, the point \((3, 6)\) would become \((-3, 6)\).
32. (d); To go from \(y = f(x) \) to \(y = f(-x) \), we reflect each point on the graph of \(y = f(x) \) about the \(y \)-axis. This means we change the sign of the \(x \)-coordinate for each point on the graph of \(y = f(x) \). Thus, the point \((3, 6)\) would become \((3, -6)\).
33. (c); To go from \(y = f(x) \) to \(y = 2f(x) \), we stretch vertically by a factor of 2. Multiply the \(y \)-coordinate of each point on the graph of \(y = f(x) \) by 2. Thus, the point \((1, 3)\) would become \((1, 6)\).
34. (c); To go from \(y = f(x) \) to \(y = f(2x) \), we compress horizontally by a factor of 2. Divide the \(x \)-coordinate of each point on the graph of \(y = f(x) \) by 2. Thus, the point \((4, 2)\) would become \((2, 2)\).
35. a. The graph of \(y = f(x + 2) \) is the same as the graph of \(y = f(x) \), but shifted 2 units to the left. Therefore, the \(x \)-intercepts are \(-7\) and \(1\).
 b. The graph of \(y = f(x - 2) \) is the same as the graph of \(y = f(x) \), but shifted 2 units to the right. Therefore, the \(x \)-intercepts are \(-3\) and \(5\).
 c. The graph of \(y = 4f(x) \) is the same as the graph of \(y = f(x) \), but stretched vertically by a factor of 4. Therefore, the \(x \)-intercepts are still \(-5\) and \(3\) since the \(y \)-coordinate of each is 0.
 d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, the \(x \)-intercepts are 5 and \(-3\).
36. a. The graph of \(y = f(x + 4) \) is the same as the graph of \(y = f(x) \), but shifted 4 units to the left. Therefore, the \(x \)-intercepts are \(-12\) and \(-3\).
 b. The graph of \(y = f(x - 3) \) is the same as the graph of \(y = f(x) \), but shifted 3 units to the right. Therefore, the \(x \)-intercepts are \(-5\) and \(4\).
Section 2.5: Graphing Techniques: Transformations

c. The graph of \(y = 2f(x) \) is the same as the graph of \(y = f(x) \), but stretched vertically by a factor of 2. Therefore, the \(x \)-intercepts are still \(-8\) and \(1\) since the \(y \)-coordinate of each is \(0\).

d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, the \(x \)-intercepts are \(8\) and \(1\).

37. a. The graph of \(y = f(x+2) \) is the same as the graph of \(y = f(x) \), but shifted \(2\) units to the left. Therefore, the graph of \(f(x+2) \) is increasing on the interval \((-3,3)\).

b. The graph of \(y = f(x-5) \) is the same as the graph of \(y = f(x) \), but shifted \(5\) units to the right. Therefore, the graph of \(f(x-5) \) is increasing on the interval \((4,10)\).

c. The graph of \(y = -f(x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(x \)-axis. Therefore, we can say that the graph of \(y = -f(x) \) must be decreasing on the interval \((-1,5)\).

d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, we can say that the graph of \(y = f(-x) \) must be decreasing on the interval \((-5,1)\).

38. a. The graph of \(y = f(x+2) \) is the same as the graph of \(y = f(x) \), but shifted \(2\) units to the left. Therefore, the graph of \(f(x+2) \) is decreasing on the interval \((-4,5)\).

b. The graph of \(y = f(x-5) \) is the same as the graph of \(y = f(x) \), but shifted \(5\) units to the right. Therefore, the graph of \(f(x-5) \) is decreasing on the interval \((3,12)\).

c. The graph of \(y = -f(x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(x \)-axis. Therefore, we can say that the graph of \(y = -f(x) \) must be increasing on the interval \((-2,7)\).

d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, we can say that the graph of \(y = f(-x) \) must be increasing on the interval \((-7,2)\).

39. \(f(x) = x^2 - 1 \)

Using the graph of \(y = x^2 \), vertically shift downward \(1\) unit.

![Graph of f(x) = x^2 - 1](image)

The domain is \((-\infty, \infty)\) and the range is \((-1, \infty)\).

40. \(f(x) = x^2 + 4 \)

Using the graph of \(y = x^2 \), vertically shift upward \(4\) units.

![Graph of f(x) = x^2 + 4](image)

The domain is \((-\infty, \infty)\) and the range is \([4, \infty)\).
Chapter 2: Functions and Their Graphs

41. \(g(x) = x^3 + 1 \)

Using the graph of \(y = x^3 \), vertically shift upward 1 unit.

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

42. \(g(x) = x^3 - 1 \)

Using the graph of \(y = x^3 \), vertically shift downward 1 unit.

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

43. \(h(x) = \sqrt{x - 2} \)

Using the graph of \(y = \sqrt{x} \), horizontally shift to the right 2 units.

The domain is \([2, \infty)\) and the range is \([0, \infty)\).

44. \(h(x) = \sqrt{x + 1} \)

Using the graph of \(y = \sqrt{x} \), horizontally shift to the left 1 unit.

The domain is \([-1, \infty)\) and the range is \([0, \infty)\).

45. \(f(x) = (x - 1)^3 + 2 \)

Using the graph of \(y = x^3 \), horizontally shift to the right 1 unit \(y = (x - 1)^3 \), then vertically shift up 2 units \(y = (x - 1)^3 + 2 \).

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

46. \(f(x) = (x + 2)^3 - 3 \)

Using the graph of \(y = x^3 \), horizontally shift to the left 2 units \(y = (x + 2)^3 \), then vertically shift down 3 units \(y = (x + 2)^3 - 3 \).
Section 2.5: Graphing Techniques: Transformations

47. \(g(x) = 4\sqrt{x} \)
 Using the graph of \(y = \sqrt{x} \), vertically stretch by a factor of 4.

48. \(g(x) = \frac{1}{2}\sqrt{x} \)
 Using the graph of \(y = \sqrt{x} \), vertically compress by a factor of \(\frac{1}{2} \).

49. \(h(x) = \frac{1}{2x} = \left(\frac{1}{2}\right) \left(\frac{1}{x} \right) \)
 Using the graph of \(y = \frac{1}{x} \), vertically compress

by a factor of \(\frac{1}{2} \).

50. \(h(x) = \sqrt[3]{2x} \)
 Using the graph of \(y = \sqrt[3]{x} \), horizontally compress by a factor of 2.

51. \(f(x) = -\sqrt[3]{x} \)
 Using the graph of \(y = \sqrt[3]{x} \), reflect the graph about the \(x \)-axis.

The domain is \((-\infty, \infty) \) and the range is \((-\infty, \infty) \).
52. \(f(x) = -\sqrt{x} \)

Using the graph of \(y = \sqrt{x} \), reflect the graph about the \(x \)-axis.

The domain is \([0, \infty)\) and the range is \((-\infty, 0]\).

53. \(g(x) = \frac{1}{\sqrt{x}} \)

Using the graph of \(y = \frac{1}{\sqrt{x}} \), reflect the graph about the \(y \)-axis.

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

54. \(g(x) = \frac{1}{-x} \)

Using the graph of \(y = \frac{1}{x} \), reflect the graph about the \(y \)-axis.

The domain is \((-\infty, 0) \cup (0, \infty)\) and the range is \((-\infty, \infty)\).

55. \(h(x) = -x^3 + 2 \)

Using the graph of \(y = x^3 \), reflect the graph about the \(x \)-axis \([y = -x^3]\), then shift vertically upward 2 units \([y = -x^3 + 2]\).

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

56. \(h(x) = \frac{1}{-x} + 2 \)

Using the graph of \(y = \frac{1}{x} \), reflect the graph about the \(y \)-axis \([y = \frac{1}{-x}]\), then shift vertically upward 2 units \([y = \frac{1}{-x} + 2]\).

The domain is \((-\infty, 0) \cup (0, \infty)\) and the range is \((-\infty, 0) \cup (0, \infty)\).

57. \(f(x) = 2(x+1)^2 - 3 \)

Using the graph of \(y = x^2 \), horizontally shift to the left 1 unit \([y = (x+1)^2]\), vertically stretch by a factor of 2 \([y = 2(x+1)^2]\), and then vertically shift downward 3 units.

Copyright © 2013 Pearson Education, Inc.
Section 2.5: Graphing Techniques: Transformations

58. \(f(x) = 3(x-2)^2 + 1 \)
Using the graph of \(y = x^2 \), horizontally shift to the right 2 units \(y = (x-2)^2 \), vertically stretch by a factor of 3 \(y = 3(x-2)^2 \), and then vertically shift upward 1 unit \(y = 3(x-2)^2 + 1 \).

The domain is \((-\infty, \infty)\) and the range is \([-3, \infty)\).

59. \(g(x) = 2\sqrt{x-2} + 1 \)
Using the graph of \(y = \sqrt{x} \), horizontally shift to the right 2 units \(y = \sqrt{x-2} \), vertically stretch by a factor of 2 \(y = 2\sqrt{x-2} \), and vertically shift upward 1 unit \(y = 2\sqrt{x-2} + 1 \).

The domain is \((-\infty, \infty)\) and the range is \([1, \infty)\).

60. \(g(x) = 3|x+1| - 3 \)
Using the graph of \(y = |x| \), horizontally shift to the left 1 unit \(y = |x+1| \), vertically stretch by a factor of 3 \(y = 3|x+1| \), and vertically shift downward 3 units \(y = 3|x+1| - 3 \).

The domain is \((-\infty, \infty)\) and the range is \([-3, \infty)\).

61. \(h(x) = \sqrt{-x} - 2 \)
Using the graph of \(y = \sqrt{x} \), reflect the graph about the y-axis \(y = \sqrt{-x} \) and vertically shift downward 2 units \(y = \sqrt{-x} - 2 \).
The domain is \((-\infty, 0]\) and the range is \([-2, \infty)\).

62. \(h(x) = \frac{4}{x} + 2 = 4\left(\frac{1}{x}\right) + 2\)

Stretch the graph of \(y = \frac{1}{x}\) vertically by a factor of 4 \(y = 4 \cdot \frac{1}{x} = \frac{4}{x}\), and vertically shift upward 2 units \(y = \frac{4}{x} + 2\).

The domain is \((-\infty, 0) \cup (0, \infty)\) and the range is \((-\infty, 2) \cup (2, \infty)\).

63. \(f(x) = -(x+1)^3 - 1\)

Using the graph of \(y = x^3\), horizontally shift to the left 1 unit \(y = (x+1)^3\), reflect the graph about the x-axis \(y = -(x+1)^3\), and vertically shift downward 1 unit \(y = -(x+1)^3 - 1\).

64. \(f(x) = -4\sqrt{x - 1}\)

Using the graph of \(y = \sqrt{x}\), horizontally shift to the right 1 unit \(y = \sqrt{x - 1}\), reflect the graph about the x-axis \(y = -\sqrt{x - 1}\), and stretch vertically by a factor of 4 \(y = -4\sqrt{x - 1}\).

The domain is \([-\infty, \infty)\) and the range is \((-\infty, \infty)\).

65. \(g(x) = 2|1 - x| = 2|(-1 + x)| = 2|x - 1|\)

Using the graph of \(y = |x|\), horizontally shift to the right 1 unit \(y = |x - 1|\), and vertically stretch by a factor of 2 \(y = 2|x - 1|\).
Section 2.5: Graphing Techniques: Transformations

66. \(g(x) = 4\sqrt{2-x} = 4\sqrt{(x-2)} \)

Using the graph of \(y = \sqrt{x} \), reflect the graph about the \(y \)-axis \(\left[y = \sqrt{-x} \right] \), horizontally shift to the right 2 units \(\left[y = \sqrt{-x-2} \right] \), and vertically stretch by a factor of 4 \(\left[y = 4\sqrt{-x-2} \right] \).

The domain is \((-\infty, \infty)\) and the range is \([0, \infty)\).

67. \(h(x) = 2\text{int}(x-1) \)

Using the graph of \(y = \text{int}(x) \), horizontally shift to the right 1 unit \(\left[y = \text{int}(x-1) \right] \), and vertically stretch by a factor of 2 \(\left[y = 2\text{int}(x-1) \right] \).

The domain is \((-\infty, \infty)\) and the range is \(\{ y \mid y \text{ is an integer} \}\).

68. \(h(x) = \text{int}(-x) \)

Reflect the graph of \(y = \text{int}(x) \) about the \(y \)-axis.

The domain is \((-\infty, \infty)\) and the range is \(\{ y \mid y \text{ is an integer} \}\).

69. a. \(F(x) = f(x) + 3 \)

Shift up 3 units.

b. \(G(x) = f(x+2) \)

Shift left 2 units.

c. \(P(x) = -f(x) \)

Reflect about the \(x \)-axis.
d. $H(x) = f(x+1) - 2$
Shift left 1 unit and shift down 2 units.

![Graph of H(x) showing a shift left 1 unit and down 2 units.]

e. $Q(x) = \frac{1}{2} f(x)$
Compress vertically by a factor of $\frac{1}{2}$.

![Graph of Q(x) showing a vertical compression by a factor of $\frac{1}{2}$.]

f. $g(x) = f(-x)$
Reflect about the y-axis.

![Graph of g(x) showing a reflection about the y-axis.]

g. $h(x) = f(2x)$
Compress horizontally by a factor of $\frac{1}{2}$.

![Graph of h(x) showing a horizontal compression by a factor of $\frac{1}{2}$.]

70. a. $F(x) = f(x) + 3$
Shift up 3 units.

![Graph of F(x) showing a shift up 3 units.]

b. $G(x) = f(x + 2)$
Shift left 2 units.

![Graph of G(x) showing a shift left 2 units.]

c. $P(x) = -f(x)$
Reflect about the x-axis.

![Graph of P(x) showing a reflection about the x-axis.]

d. $H(x) = f(x+1) - 2$
Shift left 1 unit and shift down 2 units.

![Graph of H(x) showing a shift left 1 unit and down 2 units.]

Copyright © 2013 Pearson Education, Inc.
Section 2.5: Graphing Techniques: Transformations

Section 2.5: Graphing Techniques: Transformations

Section 2.5: Graphing Techniques: Transformations

e. \(Q(x) = \frac{1}{2} f(x) \)

Compress vertically by a factor of \(\frac{1}{2} \).

![Graph of \(Q(x) \)](image)

f. \(g(x) = f(-x) \)

Reflect about the \(y \)-axis.

![Graph of \(g(x) \)](image)

g. \(h(x) = f(2x) \)

Compress horizontally by a factor of \(\frac{1}{2} \).

![Graph of \(h(x) \)](image)

71. a. \(F(x) = f(x) + 3 \)

Shift up 3 units.

![Graph of \(F(x) \)](image)

b. \(G(x) = f(x + 2) \)

Shift left 2 units.

![Graph of \(G(x) \)](image)

c. \(P(x) = -f(x) \)

Reflect about the \(x \)-axis.

![Graph of \(P(x) \)](image)

d. \(H(x) = f(x + 1) - 2 \)

Shift left 1 unit and shift down 2 units.

![Graph of \(H(x) \)](image)

e. \(Q(x) = \frac{1}{2} f(x) \)

Compress vertically by a factor of \(\frac{1}{2} \).

![Graph of \(Q(x) \)](image)
Chapter 2: Functions and Their Graphs

f. \(g(x) = f(-x) \)
 Reflect about the \(y \)-axis.

 \[(\frac{\pi}{2}, 1) \]
 \[\left(\frac{\pi}{2}, -1\right) \]

72. a. \(F(x) = f(x) + 3 \)
 Shift up 3 units.

 \[(\pi, 2) \]
 \[(0, 4) \]

b. \(G(x) = f(x + 2) \)
 Shift left 2 units.

 \[(\pi - 2, -1) \]
 \[(-\pi - 2, 1) \]

 \[(-\pi, -\frac{1}{2}) \]
 \[(\pi, -\frac{1}{2}) \]

c. \(P(x) = -f(x) \)
 Reflect about the \(x \)-axis.

 \[(-\pi, 1) \]
 \[(\pi, 1) \]

 \[(-\pi - 1, -3) \]
 \[(\pi - 1, -3) \]

d. \(H(x) = f(x + 1) - 2 \)
 Shift left 1 unit and shift down 2 units.

 \[(-\pi, -1) \]
 \[(0, -1) \]

 \[(-2\pi, -1) \]
 \[(2\pi, -1) \]

e. \(Q(x) = \frac{1}{2} f(x) \)
 Compress vertically by a factor of \(\frac{1}{2} \).

 \[(0, \frac{1}{2}) \]
 \[(-\pi, -\frac{1}{2}) \]

f. \(g(x) = f(-x) \)
 Reflect about the \(y \)-axis.

 \[(0, 1) \]
 \[(-\pi, -1) \]
 \[(\pi, -1) \]
Section 2.5: Graphing Techniques: Transformations

73. a. \(f(x) = x^3 - 9x, -4 < x < 4 \)

b. \(0 = x^3 - 9x \)
 \(0 = x(x^2 - 9) \)
 \(0 = x(x - 3)(x + 3) \)
 \(x = 0, x = 3, x = -3 \)
 The x-intercepts are \(-3, 0, \) and \(3.\)

c. The local minimum can be found by using the Minimum feature from the CALC menu on a TI-84 Plus graphing calculator.
 ![Graph showing local minimum]
 The local minimum is approximately \(-10.39\) when \(x = 1.73.\)
 The local maximum can be found by using the Maximum feature from the CALC menu on a TI-84 Plus graphing calculator.
 ![Graph showing local maximum]
 The local maximum is approximately \(10.39\) when \(x = -1.73.\)

d. From the graph above, we see that \(f\) is initially increasing, decreasing between the two extrema, and increasing again at the end. Thus, \(f\) is increasing on the interval \((-4, 1.73)\) and on the interval \((1.73, 4)\). It is decreasing on the interval \((-1.73, 1.73)\).

e. \(y = f(x + 2) \) involves a shift to the left 2 units so we subtract 2 from each x-value. Therefore, we have the following:
 x-intercepts: \(-5, -2,\) and \(1\)
 local minimum: \(-10.39\) when \(x = -0.27\)
 local maximum: \(10.39\) when \(x = 3.73\)
 increasing on \((-6, -3.73)\) and \((-0.27, 2)\);
 decreasing on \((-3.73, -0.27)\).

f. \(y = 2f(x) \) involves a vertical stretch by a factor of 2 so we multiply each y-value by 2. Therefore, we have the following:
 x-intercepts: \(-3, 0,\) and \(3\)
 local minimum: \(-20.78\) when \(x = 1.73\)
 local maximum: \(20.78\) when \(x = -1.73\)
 increasing on \((-4, -1.73)\) and \((1.73, 4)\);
 decreasing on \((-1.73, 1.73)\).

g. \(y = f(-x) \) involves a reflection about the y-axis. Therefore, we have the following:
 x-intercepts: \(-3, 0,\) and \(3\)
 local minimum: \(-10.39\) when \(x = 1.73\)
 local maximum: \(10.39\) when \(x = -1.73\)
 increasing on \((-4, -1.73)\) and \((-1.73, 1.73)\); decreasing on \((-4, -1.73)\) and \((1.73, 4)\).

74. a. \(f(x) = x^3 - 4x, -3 < x < 3 \)
b. \(0 = x^3 - 4x\)
\[0 = x(x^2 - 4)\]
\[0 = x(x - 2)(x + 2)\]
\[x = 0, \quad x = 2, \quad x = -2\]
The x-intercepts are \(-2, 0, \text{ and } 2\).

c. The local minimum can be found by using the Minimum feature from the CALC menu on a TI-84 Plus graphing calculator.

![Minimum feature result](image)

The local minimum is approximately \(-3.08\) when \(x = 1.15\).

The local maximum can be found by using the Maximum feature from the CALC menu on a TI-84 Plus graphing calculator.

![Maximum feature result](image)

The local maximum is approximately \(3.08\) when \(x = -1.15\).

d. From the graph above, we see that \(f\) is initially increasing, decreasing between the two extrema, and increasing again at the end. Thus, \(f\) is increasing on the interval \((-3,-1.15)\) and on the interval \((1.15,3)\). It is decreasing on the interval \((-1.15,3)\).

e. \(y = f(x - 4)\) involves a shift to the right 4 units so we add 4 to each x-value. Therefore, we have the following:
- x-intercepts: \(2, 4, \text{ and } 6\)
- local minimum: \(-3.08\) when \(x = 5.15\)
- local maximum: \(3.08\) when \(x = 2.85\)
- increasing on \((1.285, 5.15)\) and \((-3.08, 5.15)\);
- decreasing on \((-3.08, 0.35)\).

f. \(y = f(2x)\) involves a horizontal compression by a factor of 2 so we divide each x-value by 2. Therefore, we have the following:
- x-intercepts: \(-1, 0, \text{ and } 1\)
- local minimum: \(-3.08\) when \(x = 0.575\)
- local maximum: \(3.08\) when \(x = -0.575\)
- increasing on \((-\frac{3}{2}, -0.575)\) and \((0.575, \frac{3}{2})\);
- decreasing on \((-0.575, 0.575)\).

g. \(y = -f(x)\) involves a reflection about the x-axis. Therefore, we have the following:
- x-intercepts: \(-2, 0, \text{ and } 2\)
- local minimum: \(-3.08\) when \(x = -1.15\)
- local maximum: \(3.08\) when \(x = 1.15\)
- increasing on \((-1.15, 1.15)\);
- decreasing on \((-3, -1.15)\) and \((1.15, 3)\).

75. \(f(x) = x^2 + 2x\)
\[f(x) = (x^2 + 2x + 1) - 1\]
\[f(x) = (x + 1)^2 - 1\]
Using \(f(x) = x^2\), shift left 1 unit and shift down 1 unit.

![Graph of f(x) = x^2 + 2x](image)

76. \(f(x) = x^2 - 6x\)
\[f(x) = (x^2 - 6x + 9) - 9\]
\[f(x) = (x - 3)^2 - 9\]
Using \(f(x) = x^2\), shift right 3 units and shift down 9 units.

![Graph of f(x) = x^2 - 6x](image)
77. $f(x) = x^2 - 8x + 1$
 $f(x) = (x^2 - 8x + 16) + 1 - 16$
 $f(x) = (x - 4)^2 - 15$
Using $f(x) = x^2$, shift right 4 units and shift down 15 units.

78. $f(x) = x^2 + 4x + 2$
 $f(x) = (x^2 + 4x + 4) + 2 - 4$
 $f(x) = (x + 2)^2 - 2$
Using $f(x) = x^2$, shift left 2 units and shift down 2 units.

79. $f(x) = 2x^2 - 12x + 19$
 $= 2(x^2 - 6x) + 19$
 $= 2(x^2 - 6x + 9) + 19 - 18$
 $= 2(x - 3)^2 + 1$
Using $f(x) = x^2$, shift right 3 units, vertically stretch by a factor of 2, and then shift up 1 unit.

80. $f(x) = 3x^2 + 6x + 1$
 $= 3(x^2 + 2x + 1) + 1 - 1$
 $= 3(x + 1)^2 - 2$
Using $f(x) = x^2$, shift left 1 unit, vertically stretch by a factor of 3, and shift down 2 units.

81. $f(x) = -3x^2 - 12x - 17$
 $= -3(x^2 + 4x) - 17$
 $= -3(x^2 + 4x + 4) - 17 + 12$
 $= -3(x + 2)^2 - 5$
Using $f(x) = x^2$, shift left 2 units, stretch vertically by a factor of 3, reflect about the x-axis, and shift down 5 units.
Chapter 2: Functions and Their Graphs

82. \(f(x) = -2x^2 - 12x - 13 \)
\[= -2\left(x^2 + 6x\right) - 13 \]
\[= -2\left(x^2 + 6x + 9\right) - 13 + 18 \]
\[= -2(x + 3)^2 + 5 \]
Using \(f(x) = x^2 \), shift left 3 units, stretch vertically by a factor of 2, reflect about the \(x \)-axis, and shift up 3 units.

83. \(y = (x-c)^2 \)
If \(c = 0 \), \(y = x^2 \).
If \(c = 3 \), \(y = (x-3)^2 \); shift right 3 units.
If \(c = -2 \), \(y = (x+2)^2 \); shift left 2 units.

84. \(y = x^2 + c \)
If \(c = 0 \), \(y = x^2 \).
If \(c = 3 \), \(y = x^2 + 3 \); shift up 3 units.
If \(c = -2 \), \(y = x^2 - 2 \); shift down 2 units.

85. a. From the graph, the thermostat is set at 72°F during the daytime hours. The thermostat appears to be set at 65°F overnight.

b. To graph \(y = T(t) - 2 \), the graph of \(T(t) \) is shifted down 2 units. This change will lower the temperature in the house by 2 degrees.

c. To graph \(y = T(t + 1) \), the graph of \(T(t) \) should be shifted left one unit. This change will cause the program to switch between the daytime temperature and overnight temperature one hour sooner. The home will begin warming up at 5am instead of 6am and will begin cooling down at 8pm instead.
86. a. \(R(0) = 170.7(0)^2 + 1373(0) + 1080 = 1080 \)
The estimated worldwide music revenue for 2005 is $1080 million.

\[R(3) = 170.7(3)^2 + 1373(3) + 1080 \]
\[= 6735.3 \]
The estimated worldwide music revenue for 2008 is $6735.3 million.

\[R(5) = 170.7(5)^2 + 1373(5) + 1080 \]
\[= 12,212.5 \]
The estimated worldwide music revenue for 2010 is $12,212.5 million.

b. \(r(x) = R(x - 5) \)
\[= 170.7(x - 5)^2 + 1373(x - 5) + 1080 \]
\[= 170.7(x^2 - 10x + 25) + 1373(x - 5) + 1080 \]
\[= 170.7x^2 - 1707x + 4267.5 + 1373x - 6865 + 1080 \]
\[= 170.7x^2 - 334x - 1517.5 \]

c. The graph of \(r(x) \) is the graph of \(R(x) \) shifted 5 units to the left. Thus, \(r(x) \) represents the estimated worldwide music revenue, \(x \) years after 2000.

\[r(5) = 170.7(5)^2 - 334(5) - 1517.5 = 1080 \]
The estimated worldwide music revenue for 2005 is $1080 million.

\[r(8) = 170.7(8)^2 - 334(8) - 1517.5 \]
\[= 6735.3 \]
The estimated worldwide music revenue for 2008 is $6735.3 million.

\[r(10) = 170.7(10)^2 - 334(10) - 1517.5 \]
\[= 12,212.5 \]
The estimated worldwide music revenue for 2010 is $12,212.5 million.

d. In \(r(x) \), \(x \) represents the number of years after 2000 (see the previous part).

e. Answers will vary. One advantage might be that it is easier to determine what value should be substituted for \(x \) when using \(r(x) \) instead of \(R(x) \) to estimate worldwide music revenue.

87. \(F = \frac{9}{5}C + 32 \)
Chapter 2: Functions and Their Graphs

88. a. \[T = 2\pi \sqrt{\frac{l}{g}} \]

b. \[T_1 = 2\pi \sqrt{\frac{l+1}{g}} ; \quad T_2 = 2\pi \sqrt{\frac{l+2}{g}} ; \quad T_3 = 2\pi \sqrt{\frac{l+3}{g}} \]

c. As the length of the pendulum increases, the period increases.

d. \[T_1 = 2\pi \sqrt{\frac{2l}{g}} ; \quad T_2 = 2\pi \sqrt{\frac{3l}{g}} ; \quad T_3 = 2\pi \sqrt{\frac{4l}{g}} \]

e. If the length of the pendulum is multiplied by \(k \), the period is multiplied by \(\sqrt{k} \).

89. a. \[p(x) = -0.05x^2 + 100x - 2000 \]

b. Select the 10% tax since the profits are higher.

c. The graph of \(Y_1 \) is obtained by shifting the graph of \(p(x) \) vertically down 10,000 units. The graph of \(Y_2 \) is obtained by multiplying the \(y \)-coordinate of the graph of \(p(x) \) by 0.9. Thus, \(Y_2 \) is the graph of \(p(x) \) vertically compressed by a factor of 0.9.

d. Select the 10% tax since the graph of \(Y_1 = 0.9p(x) \geq Y_2 = -0.05x^2 + 100x - 6800 \) for all \(x \) in the domain.

90. a. \(y = |f(x)| \)

b. \(y = f(|x|) \)

91. a. To graph \(y = |f(x)| \), the part of the graph for \(f \) that lies in quadrants III or IV is reflected about the \(x \)-axis.
b. To graph \(y = f \left(\left| x \right| \right) \), the part of the graph for \(f \) that lies in quadrants II or III is replaced by the reflection of the part in quadrants I and IV reflected about the \(y \)-axis.

92. a. The graph of \(y = f(x+3) - 5 \) is the graph of \(y = f(x) \) but shifted left 3 units and down 5 units. Thus, the point \((1,3)\) becomes the point \((-2,-2)\).

b. The graph of \(y = -2f(x-2) + 1 \) is the graph of \(y = f(x) \) but shifted right 2 units, stretched vertically by a factor of 2, reflected about the \(x \)-axis, and shifted up 1 unit. Thus, the point \((1,3)\) becomes the point \((3,-5)\).

c. The graph of \(y = f(2x+3) \) is the graph of \(y = f(x) \) but shifted left 3 units and horizontally compressed by a factor of 2. Thus, the point \((1,3)\) becomes the point \((-1,3)\).

93. a. The graph of \(y = g(x+1) - 3 \) is the graph of \(y = g(x) \) but shifted left 1 unit and down 3 units. Thus, the point \((-3,5)\) becomes the point \((-4,2)\).

b. The graph of \(y = -3g(x-4) + 3 \) is the graph of \(y = g(x) \) but shifted right 4 units, stretched vertically by a factor of 3, reflected about the \(x \)-axis, and shifted up 3 units. Thus, the point \((-3,5)\) becomes the point \((-4,5)\).

c. The graph of \(y = g(3x+9) \) is the graph of \(y = f(x) \) but shifted left 9 units and horizontally compressed by a factor of 3. Thus, the point \((-3,5)\) becomes the point \((-4,5)\).

94. The graph of \(y = 4f(x) \) is a vertical stretch of the graph of \(f \) by a factor of 4, while the graph of \(y = f(4x) \) is a horizontal compression of the graph of \(f \) by a factor of \(\frac{1}{4} \).

95. The graph of \(y = f(x) - 2 \) will shift the graph of \(y = f(x) \) down by 2 units. The graph of \(y = f(x-2) \) will shift the graph of \(y = f(x) \) to the right by 2 units.

96. The graph of \(y = \sqrt{x} \) is the graph of \(y = \sqrt{x} \) but reflected about the \(y \)-axis. Therefore, our region is simply rotated about the \(y \)-axis and does not change shape. Instead of the region being bounded on the right by \(x = 4 \), it is bounded on the left by \(x = -4 \). Thus, the area of the second region would also be \(\frac{16}{3} \) square units.

97 – 98. Answers will vary.

99 – 104. Interactive Exercises.

Section 2.6

1. a. The distance \(d \) from \(P \) to the origin is \(d = \sqrt{x^2 + y^2} \). Since \(P \) is a point on the graph of \(y = x^2 - 8 \), we have:

\[
\begin{align*}
d(x) &= \sqrt{x^2 + (x^2 - 8)^2} = \sqrt{x^4 - 15x^2 + 64} \\
d(0) &= \sqrt{0^4 - 15(0)^2 + 64} = \sqrt{64} = 8
\end{align*}
\]

b. \(d(l) = \sqrt{l^4 - 15l^2 + 64} = 7.07 \)
2. a. The distance d from P to $(0, -1)$ is
$$d = \sqrt{x^2 + (y+1)^2}.$$ Since P is a point on the graph of $y = x^2 - 8$, we have:
$$d(x) = \sqrt{x^2 + (x^2 - 8 + 1)^2} = \sqrt{x^2 + (x^2 - 7)^2} = \sqrt{x^2 - 13x^2 + 49}$$
b. $d(0) = \sqrt{0^2 - 13(0)^2 + 49} = \sqrt{49} = 7$
c. $d(-1) = \sqrt{(-1)^2 - 13(-1)^2 + 49} = \sqrt{37} = 6.08$
d. d is smallest when $x = -2.74$ or when $x = 2.74$.

e. d is smallest when $x = -2.55$ or when $x = 2.55$.

3. a. The distance d from P to the point $(1, 0)$ is
$$d = \sqrt{(x-1)^2 + y^2}.$$ Since P is a point on the graph of $y = \sqrt{x}$, we have:
$$d(x) = \sqrt{(x-1)^2 + (\sqrt{x})^2} = \sqrt{x^2 - x + 1}$$
where $x \geq 0$.

e. d is smallest when $x = -2.74$ or when $x = 2.74$.

e. d is smallest when $x = -2.74$ or when $x = 2.74$.

4. a. The distance d from P to the origin is
$$d = \sqrt{x^2 + y^2}.$$ Since P is a point on the graph of $y = \frac{1}{x}$, we have:
$$d(x) = \sqrt{x^2 + \left(\frac{1}{x}\right)^2} = \sqrt{x^2 + \frac{1}{x^2}} = \sqrt{\frac{x^4 + 1}{x^2}} = \frac{x^2 + 1}{|x|}$$
b. d is smallest when $x = -1$ or $x = 1$.

c. d is smallest when $x = -2.55$ or when $x = 2.55$.

5. By definition, a triangle has area
$$A = \frac{1}{2}bh$$
where b = base, h = height. From the figure, we know that $b = x$ and $h = y$. Expressing the area of the triangle as a function of x, we have:
$$A(x) = \frac{1}{2}xy = \frac{1}{2}x(\sqrt{x}) = \frac{1}{2}x^{\frac{3}{2}}.$$

6. By definition, a triangle has area
$$A = \frac{1}{2}bh$$
where b = base, h = height. Because one vertex of the triangle is at the origin and the
other is on the \(x \)-axis, we know that
\(b = x \) and \(h = y \). Expressing the area of the triangle as a function of \(x \), we have:
\[
A(x) = \frac{1}{2} x y = \frac{1}{2} x \left(9 - x^2\right) = \frac{9}{2} x - \frac{1}{2} x^3.
\]

7. a. \(A(x) = xy = x \left(16 - x^2\right) = -x^3 + 16x \)
b. Domain: \(\{x|0 < x < 4\} \)
c. The area is largest when \(x = 2.31 \).

8. a. \(A(x) = 2xy = 2x\sqrt{4 - x^2} \)
b. \(p(x) = 2(2x) + 2(2) = 4x + 4\sqrt{4 - x^2} \)
c. Graphing the area equation:
\[
\text{The area is largest when } x = 1.41.
\]
d. Graphing the perimeter equation:
\[
\text{The perimeter is largest when } x = 1.79.
\]

9. a. In Quadrant I, \(x^2 + y^2 = 4 \rightarrow y = \sqrt{4 - x^2} \)
\[
A(x) = (2x)(2y) = 4x\sqrt{4 - x^2}
\]
b. \(p(x) = 2(2x) + 2(2y) = 4x + 4\sqrt{4 - x^2} \)
c. Graphing the area equation:
\[
\text{The area is largest when } x = 1.41.
\]
d. Graphing the perimeter equation:
\[
\text{The perimeter is largest when } x = 1.41.
\]

10. a. \(A(r) = (2r)(2r) = 4r^2 \)
b. \(p(r) = 4(2r) = 8r \)

11. a. \(C = \text{circumference}, A = \text{total area}, \)
\(r = \text{radius}, x = \text{side of square} \)
\[
C = 2\pi r = 10 - 4x \quad \Rightarrow \quad r = \frac{5 - 2x}{\pi}
\]
Chapter 2: Functions and Their Graphs

Total Area = \(\text{area}_{\text{square}} + \text{area}_{\text{circle}} = x^2 + \pi r^2 \)
\[A(x) = x^2 + \pi \left(\frac{5 - 2x}{\pi} \right)^2 = x^2 + \frac{25 - 20x + 4x^2}{\pi} \]

b. Since the lengths must be positive, we have:
- \(10 - 4x > 0 \) and \(x > 0 \)
- \(-4x > -10 \) and \(x > 0 \)
- \(x < 2.5 \) and \(x > 0 \)

Domain: \(\{ x \mid 0 < x < 2.5 \} \)

c. The total area is smallest when \(x = 1.40 \) meters.

![Graph of Total Area vs. x]

12. a. \(C = \) circumference, \(A = \) total area, \(r = \) radius, \(x = \) side of equilateral triangle

\[C = 2\pi r = 10 - 3x \Rightarrow r = \frac{10 - 3x}{2\pi} \]

The height of the equilateral triangle is \(\sqrt{3}x/2 \).

Total Area = \(\text{area}_{\text{triangle}} + \text{area}_{\text{circle}} \)
\[= \frac{1}{2} x \left(\frac{\sqrt{3}}{2} x \right) + \pi r^2 \]
\[A(x) = \frac{\sqrt{3}}{4} x^2 + \pi \left(\frac{10 - 3x}{2\pi} \right)^2 \]
\[= \frac{\sqrt{3}}{4} x^2 + \frac{100 - 60x + 9x^2}{4\pi} \]

b. Since the lengths must be positive, we have:
- \(10 - 3x > 0 \) and \(x > 0 \)
- \(-3x > -10 \) and \(x > 0 \)
- \(x < \frac{10}{3} \) and \(x > 0 \)

Domain: \(\{ x \mid 0 < x < \frac{10}{3} \} \)

13. a. Since the wire of length \(x \) is bent into a circle, the circumference is \(x \). Therefore, \(C(x) = x \).

b. Since \(C = x = 2\pi r \), \(r = \frac{x}{2\pi} \).
\[A(x) = \pi r^2 = \pi \left(\frac{x}{2\pi} \right)^2 = \frac{x^2}{4\pi} \]

14. a. Since the wire of length \(x \) is bent into a square, the perimeter is \(x \). Therefore, \(p(x) = x \).

b. Since \(P = x = 4s \), \(s = \frac{1}{4} x \), we have
\[A(x) = s^2 = \left(\frac{1}{4} x \right)^2 = \frac{1}{16} x^2 \]

15. a. \(A = \) area, \(r = \) radius; diameter = \(2r \)
\[A(r) = (2r)(r) = 2r^2 \]

b. \(p = \) perimeter
\[p(r) = 2(2r) + 2r = 6r \]

16. \(C = \) circumference, \(r = \) radius; \(x = \) length of a side of the triangle

Since \(\Delta ABC \) is equilateral, \(EM = \frac{\sqrt{3}x}{2} \).
Therefore, \(OM = \frac{\sqrt{3}x}{2} - OE = \frac{\sqrt{3}x}{2} - r \)

In \(\triangle OAM \), \(r^2 = \left(\frac{x}{2}\right)^2 + \left(\frac{\sqrt{3}x}{2} - r\right)^2 \)

\[r^2 = \frac{x^2}{4} + \frac{3}{4}x^2 - \sqrt{3}rx + r^2 \]

\[\sqrt{3}rx = x^2 \]

\[r = \frac{x}{\sqrt{3}} \]

Therefore, the circumference of the circle is

\[C(x) = 2\pi r = 2\pi \left(\frac{x}{\sqrt{3}}\right) = \frac{2\pi\sqrt{3}}{3}x \]

17. Area of the equilateral triangle

\[A = \frac{1}{2}x \cdot \frac{\sqrt{3}}{2}x = \frac{\sqrt{3}}{4}x^2 \]

From problem 16, we have \(r^2 = \frac{x^2}{3} \).

Area inside the circle, but outside the triangle:

\[A(x) = \pi r^2 - \frac{\sqrt{3}}{4}x^2 \]

\[= \frac{x^2}{3} - \frac{\sqrt{3}}{4}x^2 = \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right)x^2 \]

18. \(d^2 = d_1^2 + d_2^2 \)

\[d^2 = (30t)^2 + (40t)^2 \]

\[d(t) = \sqrt{900t^2 + 1600t^2} = \sqrt{2500t^2} = 50t \]

\[d_2 = 40t \quad d_1 = 30t \]

19. a. \(d^2 = d_1^2 + d_2^2 \)

\[d^2 = (2 - 30t)^2 + (3 - 40t)^2 \]

\[d(t) = \sqrt{(2 - 30t)^2 + (3 - 40t)^2} \]

\[= \sqrt{4 - 120t + 900t^2 + 9 - 240t + 1600t^2} \]

\[= \sqrt{2500t^2 - 360t + 13} \]

20. \(r = \) radius of cylinder, \(h = \) height of cylinder, \(V = \) volume of cylinder

\[r^2 + \left(\frac{h}{2}\right)^2 = R^2 \Rightarrow r^2 + \frac{h^2}{4} = R^2 \Rightarrow r^2 = R^2 - \frac{h^2}{4} \]

\[V = \pi r^2 h \]

\[V(h) = \pi \left(R^2 - \frac{h^2}{4} \right)h = \pi h \left(R^2 - \frac{h^2}{4} \right) \]

21. \(r = \) radius of cylinder, \(h = \) height of cylinder, \(V = \) volume of cylinder

By similar triangles:

\[\frac{H}{R} = \frac{H - h}{r} \]

\[Hr = R(H - h) \]

\[Hr = RH - Rh \]

\[Rh = RH - Hr \]

\[h = \frac{RH - Hr}{R} = \frac{H(R - r)}{R} \]

\[V = \pi r^2 h = \pi r^2 \left(\frac{H(R - r)}{R} \right) = \frac{\pi H(R - r)r^2}{R} \]

22. a. The total cost of installing the cable along the road is 500x. If cable is installed \(x \) miles along the road, there are \(5 - x \) miles between the road to the house and where the cable ends along the road.
Chapter 2: Functions and Their Graphs

146

Copyright © 2013 Pearson Education, Inc.

The total cost of installing the cable is:

\[C(x) = 500x + 700\sqrt{x^2 - 10x + 29} \]

Domain: \(\{ x | 0 \leq x \leq 5 \} \)

b. \(C(1) = 500(1) + 700\sqrt{1^2 - 10(1) + 29} = 500 + 700\sqrt{20} = 3630.50 \)

c. \(C(3) = 500(3) + 700\sqrt{3^2 - 10(3) + 29} = 1500 + 700\sqrt{8} = 3479.90 \)

d. 4500

\[0 \quad 3000 \quad 5 \]

e. Using MINIMUM, the graph indicates that \(x = 2.96 \) miles results in the least cost.

The time on the boat is given by \(\frac{d_1}{3} \). The time on land is given by \(\frac{12 - x}{5} \).

\[d_1 = \sqrt{x^2 + 2^2} = \sqrt{x^2 + 4} \]

The total time for the trip is:

\[T(x) = \frac{12 - x}{5} + \frac{d_1}{3} = \frac{12 - x}{5} + \frac{\sqrt{x^2 + 4}}{3} \]

b. Domain: \(\{ x | 0 \leq x \leq 12 \} \)

c. \(T(4) = \frac{12 - 4}{5} + \frac{\sqrt{4^2 + 4}}{3} = \frac{8 + \sqrt{20}}{5} = 3.09 \) hours

d. \(T(8) = \frac{12 - 8}{5} + \frac{\sqrt{8^2 + 4}}{3} = \frac{4 + \sqrt{68}}{5} = 3.55 \) hours

24. Consider the diagrams shown below.
There is a pair of similar triangles in the diagram. Since the smaller triangle is similar to the larger triangle, we have the proportion

\[\frac{r}{h} = \frac{4}{16} \implies \frac{r}{h} = \frac{1}{4} \implies r = \frac{1}{4}h \]

Substituting into the volume formula for the conical portion of water gives

\[V(h) = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi \left(\frac{1}{4}h \right)^2 h = \frac{\pi}{48} h^3. \]

25. a. length = 24 − 2x; width = 24 − 2x; height = x

\[V(x) = x(24 - 2x)(24 - 2x) = x(24 - 2x)^2 \]

b. \[V(3) = 3(24 - 2(3))^2 = 3(18)^2 = 3(324) = 972 \text{ in}^3. \]

c. \[V(10) = 10(24 - 2(10))^2 = 10(4)^2 = 10(16) = 160 \text{ in}^3. \]

d. \[y_1 = x(24 - 2x)^2 \]

The amount of material is least when \(x = 2.71 \text{ ft.} \)

26. a. Let \(A = \) amount of material, \(x = \) length of the base, \(h = \) height, and \(V = \) volume.

\[V = x^2 h = 10 \Rightarrow h = \frac{10}{x^2} \]

Total Area \(A = (\text{Area}_{\text{base}}) + (4)(\text{Area}_{\text{side}}) \)

\[= x^2 + 4xh \]

\[= x^2 + 4x \left(\frac{10}{x^2} \right) \]

\[= x^2 + \frac{40}{x} \]

\[A(x) = x^2 + \frac{40}{x} \]

b. \(A(1) = 1^2 + \frac{40}{1} = 1 + 40 = 41 \text{ ft}^2 \)

c. \(A(2) = 2^2 + \frac{40}{2} = 4 + 20 = 24 \text{ ft}^2 \)

d. \(y_1 = x^2 + \frac{40}{x} \)
Chapter 2: Functions and Their Graphs

4. \(f(x) = \sqrt{x^2 - 4} \)
 a. \(f(2) = \sqrt{2^2 - 4} = \sqrt{4 - 4} = \sqrt{0} = 0 \)
 b. \(f(-2) = \sqrt{(-2)^2 - 4} = \sqrt{4 - 4} = \sqrt{0} = 0 \)
 c. \(f(-x) = \sqrt{(-x)^2 - 4} = \sqrt{x^2 - 4} \)
 d. \(-f(x) = -\sqrt{x^2 - 4} \)
 e. \(f(x - 2) = \sqrt{(x - 2)^2 - 4} \)
 = \sqrt{x^2 - 4x + 4 - 4} \)
 = \sqrt{x^2 - 4x} \)
 f. \(f(2x) = \sqrt{(2x)^2 - 4} = \sqrt{4x^2 - 4} \)

5. \(f(x) = \frac{x^2 - 4}{x^2} \)
 a. \(f(2) = \frac{2^2 - 4}{2^2} = \frac{4 - 4}{4} = 0 = 0 \)
 b. \(f(-2) = \frac{(-2)^2 - 4}{(-2)^2} = \frac{4 - 4}{4} = 0 = 0 \)
 c. \(f(-x) = \frac{(-x)^2 - 4}{(-x)^2} = \frac{x^2 - 4}{x^2} \)
 d. \(-f(x) = -\left(\frac{x^2 - 4}{x^2} \right) = \frac{4 - x^2}{x^2} = -\frac{x^2 - 4}{x^2} \)
 e. \(f(x - 2) = \frac{(x - 2)^2 - 4}{(x - 2)^2} = \frac{x^2 - 4x + 4 - 4}{(x - 2)^2} \)
 = \frac{x^2 - 4x}{(x - 2)^2} = \frac{x(x - 4)}{(x - 2)^2} \)
 f. \(f(2x) = \frac{(2x)^2 - 4}{(2x)^2} = \frac{4x^2 - 4}{4x^2} \)
 = \frac{4(x^2 - 1)}{4x^2} = \frac{x^2 - 1}{x^2} \)

6. \(f(x) = \frac{x}{x^2 - 9} \)
 The denominator cannot be zero:
 \(x^2 - 9 \neq 0 \)
 \((x + 3)(x - 3) \neq 0 \)
 \(x \neq -3 \text{ or } 3 \)
 Domain: \(\{ x \mid x \neq -3, x \neq 3 \} \)

7. \(f(x) = \sqrt{2 - x} \)
 The radicand must be non-negative:
 \(2 - x \geq 0 \)
 \(x \leq 2 \)
 Domain: \(\{ x \mid x \leq 2 \} \text{ or } (-\infty, 2] \)

8. \(g(x) = \frac{\sqrt{x}}{x} \)
 The denominator cannot be zero:
 \(x \neq 0 \)
 Domain: \(\{ x \mid x \neq 0 \} \)

9. \(f(x) = \frac{x}{x^2 + 2x - 3} \)
 The denominator cannot be zero:
 \(x^2 + 2x - 3 \neq 0 \)
 \((x + 3)(x - 1) \neq 0 \)
 \(x \neq -3 \text{ or } 1 \)
 Domain: \(\{ x \mid x \neq -3, x \neq 1 \} \)

10. \(f(x) = \frac{\sqrt{x + 1}}{x^2 - 4} \)
 The denominator cannot be zero:
 \(x^2 - 4 \neq 0 \)
 \(x^2 \neq 4 \)
 \(x \neq \pm 2 \)
 The radicand in the numerator must be non-negative:
 \(x + 1 \geq 0 \)
 \(x \geq -1 \)
 Domain: \(\{ x \mid x \geq -1, x \neq 2 \} \)

Copyright © 2013 Pearson Education, Inc.
11. \(f(x) = \frac{x}{\sqrt{x + 8}} \)

The denominator cannot be zero and the radicand must be non-negative:
\(x + 8 > 0 \)
\(x > -8 \)

Domain: \(\{ x \mid x > -8 \} \)

12. \(f(x) = 2 - x \quad g(x) = 3x + 1 \)

\((f + g)(x) = f(x) + g(x) \)
\(= 2 - x + 3x + 1 = 2x + 3 \)

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\((f - g)(x) = f(x) - g(x) \)
\(= 2 - x - (3x + 1) \)
\(= 2 - x - 3x - 1 \)
\(= -4x + 1 \)

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\((f \cdot g)(x) = f(x) \cdot g(x) \)
\(= (2 - x)(3x + 1) \)
\(= 6x + 2 - 3x^2 - x \)
\(= -3x^2 + 5x + 2 \)

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\(\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{2 - x}{3x + 1} \)
\(3x + 1 \neq 0 \)

\(3x - 1 \Rightarrow x \neq -\frac{1}{3} \)

Domain: \(\{ x \mid x \neq -\frac{1}{3} \} \)

13. \(f(x) = 3x^2 + x + 1 \quad g(x) = 3x \)

\((f + g)(x) = f(x) + g(x) \)
\(= 3x^2 + x + 1 + 3x \)
\(= 3x^2 + 4x + 1 \)

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\((f - g)(x) = f(x) - g(x) \)
\(= 3x^2 + x + 1 - 3x \)
\(= 3x^2 - 2x + 1 \)

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\((f \cdot g)(x) = f(x) \cdot g(x) \)
\(= (3x^2 + x + 1)(3x) \)
\(= 9x^3 + 3x^2 + 3x \)

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\(f \left(\frac{1}{x} \right)(x) = f(x) : \frac{1}{x} \)
\(= \frac{x + 1}{x} \cdot \frac{1}{x} \)
\(= \frac{x + 1}{x(x - 1)} \)

Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

14. \(f(x) = \frac{x + 1}{x - 1} \quad g(x) = \frac{1}{x} \)

\((f + g)(x) = f(x) + g(x) \)
\(= \frac{x + 1 + 1}{x - 1} \cdot \frac{x(x - 1)}{x} \)
\(= \frac{x(x + 1) + 1(x - 1)}{x(x - 1)} \)
\(= \frac{x^2 + x + x - 1}{x(x - 1)} \)
\(= \frac{x^2 + 2x - 1}{x(x - 1)} \)

Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

\((f - g)(x) = f(x) - g(x) \)
\(= \frac{x + 1 - 1}{x - 1} \cdot \frac{x(x - 1)}{x} \)
\(= \frac{x(x + 1) - 1(x - 1)}{x(x - 1)} \)
\(= \frac{x^2 + x - x + 1}{x(x - 1)} \)
\(= \frac{x^2 + 1}{x(x - 1)} \)

Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

\((f \cdot g)(x) = f(x) \cdot g(x) = \left(\frac{x + 1}{x - 1} \right) \cdot \left(\frac{1}{x} \right) = \frac{x + 1}{x(x - 1)} \)

Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

\(\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{x + 1}{x - 1} \cdot \frac{1}{x} = \frac{x + 1}{x(x - 1)} \)

Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)
15. \(f(x) = -2x^2 + x + 1 \)
\[
\frac{f(x+h) - f(x)}{h} = \frac{-2((x+h)^2 + (x+h) + 1 - (-2x^2 + x + 1)}{h}
\]
\[
= \frac{-2(x^2 + 2xh + h^2) + x + h + 1 + 2x^2 - x - 1}{h}
\]
\[
= \frac{-2x^2 - 4xh - 2h^2 + x + h + 1 + 2x^2 - x - 1}{h}
\]
\[
= \frac{-4xh - 2h^2 + h}{h} = \frac{h(-4x - 2h + 1)}{h}
\]
\[
= -4x - 2h + 1
\]

16. a. Domain: \([-4, 3] \)
Range: \([-3, 3] \)

b. Intercept: \((0,0) \)

c. \(f(-2) = -1 \)

d. \(f(x) = -3 \) when \(x = -4 \)

e. \(f(x) > 0 \) when \(0 < x \leq 3 \)
\(\{ x | 0 < x \leq 3 \} \)

f. To graph \(y = f(x - 3) \), shift the graph of \(f \) horizontally 3 units to the right.

17. a. Domain: \(\{ x | x \text{ is any real number} \} \)
Range: \(\{ y | y \text{ is any real number} \} \)

b. Increasing: \((-\infty, -2) \) and \((2, \infty) \); Decreasing: \((-2, 2) \)

c. Local minimum is \(-1 \) at \(x = 2 \); Local maximum is \(1 \) at \(x = -2 \)

d. Absolute minimum is \(-3 \) at \(x = -4 \); Absolute maximum is \(3 \) at \(x = 4 \)

e. The graph is symmetric with respect to the origin.

f. The function is odd.

g. \(x \)-intercepts: \(-3, 0, 3 \); \(y \)-intercept: \(0 \)

18. \(f(x) = x^3 - 4x \)
\[
f(-x) = (-x)^3 - 4(-x) = -x^3 + 4x
\]
\[
= - \left(x^3 - 4x \right) = -f(x)
\]
f. \(f \) is odd.
19. \(g(x) = \frac{4 + x^2}{1 + x^4} \)
\[g(-x) = \frac{4 + (-x)^2}{1 + (-x)^4} = \frac{4 + x^2}{1 + x^4} = g(x) \]
g is even.

20. \(G(x) = 1 - x + x^3 \)
\[G(-x) = 1 - (-x) + (-x)^3 \]
\[= 1 + x - x^3 \neq -G(x) \text{ or } G(x) \]
G is neither even nor odd.

21. \(f(x) = \frac{x}{1 + x^2} \)
\[f(-x) = \frac{-x}{1 + (-x)^2} = -\frac{x}{1 + x^2} = -f(x) \]
f is odd.

22. \(f(x) = 2x^3 - 5x + 1 \) on the interval \((-3, 3)\)
Use MAXIMUM and MINIMUM on the graph of \(y = 2x^3 - 5x + 1 \).

local maximum: 4.04 when \(x = -0.91 \)
local minimum: -2.04 when \(x = 0.91 \)
f is increasing on: \((-3,-0.91) \) and \((0.91,3); \)
f is decreasing on: \((-0.91,0.91) . \)

23. \(f(x) = 2x^4 - 5x^3 + 2x + 1 \) on the interval \((-2,3)\)
Use MAXIMUM and MINIMUM on the graph of \(y = 2x^4 - 5x^3 + 2x + 1 \).

local maximum: 1.53 when \(x = 0.41 \)

Chapter 2 Review Exercises

24. \(f(x) = 8x^2 - x \)
a. \[\frac{f(2) - f(1)}{2 - 1} = \frac{8(2)^2 - 2 - [8(1)^2 - 1]}{1} \]
\[= 32 - 2 - (7) = 23 \]
b. \[\frac{f(1) - f(0)}{1 - 0} = \frac{8(1)^2 - 1 - [8(0)^2 - 0]}{1} \]
\[= 8 - 1 - (0) = 7 \]
c. \[\frac{f(4) - f(2)}{4 - 2} = \frac{8(4)^2 - 4 - [8(2)^2 - 2]}{2} \]
\[= \frac{128 - 4 - (30)}{2} = \frac{94}{2} = 47 \]

25. \(f(x) = 2 - 5x \)
\[\frac{f(3) - f(2)}{3 - 2} = \frac{[2 - 5(3)] - [2 - 5(2)]}{3 - 2} \]
\[= \frac{(2 - 15) - (2 - 10)}{1} \]
\[= -13 - (-8) = -5 \]

26. \(f(x) = 3x - 4x^2 \)
\[\frac{f(3) - f(2)}{3 - 2} = \frac{[3(3) - 4(3)^2] - [3(2) - 4(2)^2]}{3 - 2} \]
\[= \frac{9 - 36 - (6 - 16)}{1} \]
\[= -27 + 10 = -17 \]

27. The graph does not pass the Vertical Line Test
and is therefore not a function.

28. The graph passes the Vertical Line Test and is
therefore a function.
29. \(f(x) = |x| \)

30. \(f(x) = \sqrt{x} \)

31. \(F(x) = \frac{|x|}{4} \). Using the graph of \(y = |x| \), vertically shift the graph downward 4 units.

32. \(g(x) = -2|x| \). Reflect the graph of \(y = |x| \) about the x-axis and vertically stretch the graph by a factor of 2.

33. \(h(x) = \sqrt{x} \). Using the graph of \(y = \sqrt{x} \), horizontally shift the graph to the right 1 unit.

34. \(f(x) = \sqrt{1-x} = \sqrt{-(x-1)} \). Reflect the graph of \(y = \sqrt{x} \) about the y-axis and horizontally shift the graph to the right 1 unit.
35. \(h(x) = (x-1)^2 + 2 \). Using the graph of \(y = x^2 \), horizontally shift the graph to the right 1 unit and vertically shift the graph up 2 units.

Intercepts: (0, 3)
Domain: \(\{ x \mid x \text{ is any real number} \} \)
Range: \(\{ y \mid y \geq 2 \} \) or \([2, \infty) \)

d. Range: \(\{ y \mid y > -6 \} \) or \((-6, \infty) \)

e. There is a jump in the graph at \(x = 1 \). Therefore, the function is not continuous.

36. \(g(x) = -2(x+2)^3 - 8 \)

Using the graph of \(y = x^3 \), horizontally shift the graph to the left 2 units, vertically stretch the graph by a factor of 2, reflect about the \(x \)-axis, and vertically shift the graph down 8 units.

Intercepts: (0, -24), \((-2 - \sqrt{4}, 0) = (-3.6, 0)\)
Domain: \(\{ x \mid x \text{ is any real number} \} \)
Range: \(\{ y \mid y \text{ is any real number} \} \)

d. Range: \(\{ y \mid y \geq -4, y \neq 0 \} \)

e. There is a jump at \(x = 0 \). Therefore, the function is not continuous.

37. \(f(x) = \begin{cases} 3x & \text{if } -2 < x \leq 1 \\ x + 1 & \text{if } x > 1 \end{cases} \)

a. Domain: \(\{ x \mid x > -2 \} \) or \((-2, \infty) \)

b. Intercept: (0, 0)

c. Graph:

d. Range: \(\{ y \mid y \geq -4 \} \) or \([-4, \infty) \)

e. There is a jump at \(x = 0 \). Therefore, the function is not continuous.

38. \(f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 3x & \text{if } x > 0 \end{cases} \)

a. Domain: \(\{ x \mid x \geq -4 \} \) or \([-4, \infty) \)

b. Intercept: (0, 1)

c. Graph:

d. Range: \(\{ y \mid y \geq -4, y \neq 0 \} \)

e. There is a jump at \(x = 0 \). Therefore, the function is not continuous.

39. \(f(x) = \frac{Ax + 5}{6x - 2} \) and \(f(1) = 4 \)

\[
A(1) + 5 = 4 \\
\frac{A + 5}{4} = 4 \\
A + 5 = 16 \\
A = 11
\]
40. a. \[x^2 h = 10 \Rightarrow h = \frac{10}{x^2} \]
\[A(x) = 2x^2 + 4x h \]
\[= 2x^2 + 4x \left(\frac{10}{x^2} \right) \]
\[= 2x^2 + \frac{40}{x} \]

b. \[A(1) = 2 \cdot 1^2 + \frac{40}{1} = 2 + 40 = 42 \text{ ft}^2 \]
c. \[A(2) = 2 \cdot 2^2 + \frac{40}{2} = 8 + 20 = 28 \text{ ft}^2 \]
d. Graphing:

Graphing:

The area is smallest when \(x \approx 2.15 \) feet.

41. a. Consider the following diagram:

The area of the rectangle is \(A = xy \). Thus, the area function for the rectangle is:
\[A(x) = x(10 - x^2) = -x^3 + 10x \]

b. The maximum value occurs at the vertex:

The maximum area is roughly:
\[A(1.83) = -(1.83)^3 + 10(1.83) \]
\[= 12.17 \text{ square units} \]

Chapter 2 Test

1. a. \(\{(2,5),(4,6),(6,7),(8,8)\} \)
 This relation is a function because there are no ordered pairs that have the same first element and different second elements.
 Domain: \(\{2,4,6,8\} \)
 Range: \(\{5,6,7,8\} \)

b. \(\{(1,3),(4,-2),(-3,5),(1,7)\} \)
 This relation is not a function because there are two ordered pairs that have the same first element but different second elements.

c. This relation is not a function because the graph fails the vertical line test.

d. This relation is a function because it passes the vertical line test.
 Domain: \(\{x \mid x \text{ is any real number}\} \)
 Range: \(\{y \mid y \geq 2\} \text{ or } [2, \infty) \)

2. \(f(x) = \sqrt{4-5x} \)
 The function tells us to take the square root of \(4-5x \). Only nonnegative numbers have real square roots so we need \(4-5x \geq 0 \).
 \[4-5x \geq 0 \]
 \[4-5x-4 \geq 0-4 \]
 \[-5x \geq -4 \]
 \[-5x \leq -4 \]
 \[x \leq \frac{4}{5} \]
 Domain: \(\left\{ x \mid \left[x \leq \frac{4}{5}\right] \text{ or } \left(-\infty, \frac{4}{5}\right]\right\} \)
 \[f(-1) = \sqrt{4-5(-1)} = \sqrt{4+5} = \sqrt{9} = 3 \]

3. \(g(x) = \frac{x+2}{|x+2|} \)
 The function tells us to divide \(x+2 \) by \(|x+2| \).
 Division by 0 is undefined, so the denominator can never equal 0. This means that \(x \neq -2 \).
 Domain: \(\{x \mid x \neq -2\} \)
 \[g(-1) = \frac{(-1)+2}{|(-1)+2|} = \frac{1}{|1|} = 1 \]
4. \(h(x) = \frac{x - 4}{x^2 + 5x - 36} \)

The function tells us to divide \(x - 4 \) by \(x^2 + 5x - 36 \). Since division by 0 is not defined, we need to exclude any values which make the denominator 0.

\(x^2 + 5x - 36 = 0 \)

\((x + 9)(x - 4) = 0 \)

\(x = -9 \) or \(x = 4 \)

Domain: \(\{ x \mid x \neq -9, x \neq 4 \} \)

(note: there is a common factor of \(x - 4 \) but we must determine the domain prior to simplifying)

\(h(-1) = \frac{(-1) - 4}{(-1)^2 + 5(-1) - 36} = \frac{-5}{-40} = \frac{1}{8} \)

5. a. To find the domain, note that all the points on the graph will have an \(x \)-coordinate between \(-5\) and \(5\), inclusive. To find the range, note that all the points on the graph will have a \(y \)-coordinate between \(-3\) and \(3\), inclusive.

Domain: \(\{ x \mid -5 \leq x \leq 5 \} \) or \([-5, 5]\]

Range: \(\{ y \mid -3 \leq y \leq 3 \} \) or \([-3, 3]\]

b. The intercepts are \((0, 2)\), \((-2, 0)\), and \((2, 0)\).

x-intercepts: \(-2, 2\)

y-intercept: 2

c. \(f(1) \) is the value of the function when \(x = 1 \). According to the graph, \(f(1) = 3 \).

d. Since \((-5, -3)\) and \((3, -3)\) are the only points on the graph for which \(y = f(x) = -3 \), we have \(f(x) = -3 \) when \(x = -5 \) and \(x = 3 \).

e. To solve \(f(x) < 0 \), we want to find \(x \)-values such that the graph is below the \(x \)-axis. The graph is below the \(x \)-axis for values in the domain that are less than \(-2\) and greater than \(2\). Therefore, the solution set is \(\{ x \mid -5 \leq x < -2 \text{ or } 2 < x \leq 5 \} \).

In interval notation we would write the solution set as \([-5, -2) \cup (2, 5]\).

6. \(f(x) = -x^4 + 2x^3 + 4x^2 - 2 \)

We set \(X_{\text{min}} = -5 \) and \(X_{\text{max}} = 5 \). The standard Ymin and Ymax will not be good enough to see the whole picture so some adjustment must be made.

We see that the graph has a local maximum of \(-0.86\) (rounded to two places) when \(x = -0.85 \) and another local maximum of 15.55 when \(x = 2.35 \). There is a local minimum of \(-2\) when \(x = 0 \). Thus, we have

Local maxima: \(f(-0.85) = -0.86 \)

\(f(2.35) = 15.55 \)

Local minima: \(f(0) = -2 \)

The function is increasing on the intervals \((-5, -0.85)\) and \((0, 2.35)\) and decreasing on the intervals \((-0.85, 0)\) and \((2.35, 5)\).

7. a. \(f(x) = \begin{cases} 2x + 1 & x < -1 \\ x - 4 & x \geq -1 \end{cases} \)

To graph the function, we graph each “piece”. First we graph the line \(y = 2x + 1 \) but only keep the part for which \(x < -1 \). Then we plot the line \(y = x - 4 \) but only keep the part for which \(x \geq -1 \).

b. To find the intercepts, notice that the only piece that hits either axis is \(y = x - 4 \).
Chapter 2: Functions and Their Graphs

1. \(y = x - 4 \) \quad y = x - 4

2. \(y = 0 - 4 \quad 0 = x - 4 \)

3. \(y = -4 \quad 4 = x \)

The intercepts are \((0, -4)\) and \((4, 0)\).

c. To find \(g(-5) \) we first note that \(x = -5 \) so we must use the first “piece” because \(-5 < -1\).

\[g(-5) = 2(-5) + 1 = -10 + 1 = -9 \]

d. To find \(g(2) \) we first note that \(x = 2 \) so we must use the second “piece” because \(2 \geq -1 \).

\[g(2) = 2 - 4 = -2 \]

8. The average rate of change from 3 to 4 is given by

\[\Delta y = \frac{f(4) - f(3)}{4 - 3} \]

\[= \frac{(3(4)^2 - 2(4) + 4) - (3(3)^2 - 2(3) + 4)}{4 - 3} \]

\[= \frac{44 - 25}{1} = 19 \]

9. a. \(f - g = (2x^2 + 1) - (3x - 2) \)

\[= 2x^2 + 1 - 3x + 2 = 2x^2 - 3x + 3 \]

b. \(f \cdot g = (2x^2 + 1)(3x - 2) = 6x^3 - 4x^2 + 3x - 2 \)

c. \(f(x + h) - f(x) = (2(x + h)^2 + 1) - (2x^2 + 1) \)

\[= (2x^2 + 2xh + h^2 + 1) - (2x^2 + 1) \]

\[= 2x^2 + 4xh + h^2 + 1 - 2x^2 - 1 \]

\[= 4xh + 2h^2 \]

10. a. The basic function is \(y = x^3 \) so we start with the graph of this function.

Next we shift this graph 1 unit to the left to obtain the graph of \(y = (x + 1)^3 \).

b. The basic function is \(y = |x| \) so we start with the graph of this function.
Chapter 2 Chapter Test

Next we shift this graph 4 units to the left to obtain the graph of $y = |x + 4|$.

Next we shift this graph up 2 units to obtain the graph of $y = |x + 4| + 2$.

11. a. $r(x) = -0.115x^2 + 1.183x + 5.623$

For the years 1992 to 2004, we have values of x between 0 and 12. Therefore, we can let $X_{\text{min}} = 0$ and $X_{\text{max}} = 12$. Since r is the interest rate as a percent, we can try letting $Y_{\text{min}} = 0$ and $Y_{\text{max}} = 10$.

The highest rate during this period appears to be 8.67%, occurring in 1997 ($x = 5$).

b. For 2010, we have $x = 2010 - 1992 = 18$.

\[r(18) = -0.115(18)^2 + 1.183(18) + 5.623 \]

\[r(18) = -10.343 \]

The model predicts that the interest rate will be -10.343%. This is not a reasonable value since it implies that the bank would be paying interest to the borrower.

12. a. Let $x =$ width of the rink in feet. Then the length of the rectangular portion is given by $2x - 20$. The radius of the semicircular portions is half the width, or $r = \frac{x}{2}$.

To find the volume, we first find the area of the surface and multiply by the thickness of the ice. The two semicircles can be combined to form a complete circle, so the area is given by

\[A = l \cdot w + \pi r^2 \]

\[= (2x - 20)(x) + \pi \left(\frac{x}{2}\right)^2 \]

\[= 2x^2 - 20x + \frac{\pi x^2}{4} \]

We have expressed our measures in feet so we need to convert the thickness to feet as well.

0.75 in $\cdot \frac{1 \text{ ft}}{12 \text{ in}} = 0.0625 \text{ ft} = \frac{1}{15} \text{ ft}$

Now we multiply this by the area to obtain the volume. That is,

\[V(x) = \frac{1}{15} \left(2x^2 - 20x + \frac{\pi x^2}{4}\right) \]

\[V(x) = \frac{x^2}{8} - \frac{5x}{4} + \frac{\pi x^2}{64} \]

b. If the rink is 90 feet wide, then we have $x = 90$.

Copyright © 2013 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs

\[V(90) = \frac{90^2}{8} - \frac{5(90)}{4} + \frac{\pi(90)^2}{64} = 1297.61 \]

The volume of ice is roughly 1297.61 ft³.

Chapter 2 Cumulative Review

1. \(3x - 8 = 10\)
 \[3x - 8 + 8 = 10 + 8\]
 \[3x = 18\]
 \[\frac{3x}{3} = \frac{18}{3}\]
 \[x = 6\]
 The solution set is \(\{6\}\).

2. \(3x^2 - x = 0\)
 \[x(3x - 1) = 0\]
 \[x = 0\] or \(3x - 1 = 0\)
 \[3x = 1\]
 \[x = \frac{1}{3}\]
 The solution set is \(\left\{0, \frac{1}{3}\right\}\).

3. \(x^2 - 8x - 9 = 0\)
 \[(x - 9)(x + 1) = 0\]
 \[x - 9 = 0\] or \(x + 1 = 0\)
 \[x = 9\] \(x = -1\)
 The solution set is \(\{-1, 9\}\).

4. \(6x^2 - 5x + 1 = 0\)
 \[(3x - 1)(2x - 1) = 0\]
 \[3x - 1 = 0\] or \(2x - 1 = 0\)
 \[3x = 1\] \(2x = 1\)
 \[x = \frac{1}{3}\] \(x = \frac{1}{2}\)
 The solution set is \(\left\{\frac{1}{3}, \frac{1}{2}\right\}\).

5. \(|2x + 3| = 4\)
 \[2x + 3 = -4\] or \(2x + 3 = 4\)
 \[2x = -7\] \(2x = 1\)
 \[x = -\frac{7}{2}\] \(x = \frac{1}{2}\)
 The solution set is \(\left\{-\frac{7}{2}, \frac{1}{2}\right\}\).

6. \(\sqrt{2x + 3} = 2\)
 \[(\sqrt{2x + 3})^2 = 2^2\]
 \[2x + 3 = 4\]
 \[2x = 1\]
 \[x = \frac{1}{2}\]
 Check:
 \[\sqrt{2\left(\frac{1}{2}\right)} + 3 = 2\]
 \[\sqrt{1 + 3} = 2\]
 \[\sqrt{4} = 2\]
 \[2 = 2\] T
 The solution set is \(\left\{\frac{1}{2}\right\}\).

7. \(2 - 3x > 6\)
 \[-3x > 4\]
 \[x < -\frac{4}{3}\]
 Solution set: \(\left\{x \mid x < -\frac{4}{3}\right\}\)
 Interval notation: \(\left(-\infty, -\frac{4}{3}\right)\)

8. \(|2x - 5| < 3\)
 \[-3 < 2x - 5 < 3\]
 \[2 < 2x < 8\]
 \[1 < x < 4\]
 Solution set: \(\left\{x \mid 1 < x < 4\right\}\)
Chapter 2 Cumulative Review

9. \[|4x + 1| \geq 7\]
 \[4x + 1 \leq -7 \quad \text{or} \quad 4x + 1 \geq 7\]
 \[4x \leq -8 \quad 4x \geq 6\]
 \[x \leq -2 \quad x \geq \frac{3}{2}\]

Solution set: \(\{ x | x \leq -2 \quad \text{or} \quad x \geq \frac{3}{2} \}\)

Interval notation: \((-\infty, -2] \cup [\frac{3}{2}, \infty)\)

10. a. \[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\]
 \[= \sqrt{(3 - (-2))^2 + (-5 - (-3))^2}\]
 \[= \sqrt{(3 + 2)^2 + (-5 + 3)^2}\]
 \[= \sqrt{5^2 + (-2)^2} = \sqrt{25 + 4}\]
 \[= \sqrt{29}\]

b. \[M = \left(\frac{x_1 + x_2, y_1 + y_2}{2}\right)\]
 \[= \left(\frac{-2 + 3, -3 + (-5)}{2}\right)\]
 \[= \left(\frac{1}{2}, -4\right)\]

c. \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - (-3)}{3 - (-2)} = \frac{-2}{5}\]

11. \[3x - 2y = 12\]
 x-intercept:
 \[3x - 2(0) = 12\]
 \[3x = 12\]
 \[x = 4\]
 The point \((4, 0)\) is on the graph.

y-intercept:
\[3(0) - 2y = 12\]
\[-2y = 12\]
\[y = -6\]

The point \((0, -6)\) is on the graph.

12. \[x = y^2\]

<table>
<thead>
<tr>
<th>y</th>
<th>x = y^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>((-2)^2 = 4)</td>
</tr>
<tr>
<td>-1</td>
<td>((-1)^2 = 1)</td>
</tr>
<tr>
<td>0</td>
<td>(0^2 = 0)</td>
</tr>
<tr>
<td>1</td>
<td>(1^2 = 1)</td>
</tr>
<tr>
<td>2</td>
<td>(2^2 = 4)</td>
</tr>
</tbody>
</table>

13. \[x^2 + (y - 3)^2 = 16\]

This is the equation of a circle with radius \(r = \sqrt{16} = 4\) and center at \((0, 3)\). Starting at the center we can obtain some points on the graph by moving 4 units up, down, left, and right. The corresponding points are \((0, 7), (0, -1), (3, 5), (-3, 5), (-1, -1), (1, -1), (-1, 1), (1, 1)\).
Chapter 2: Functions and Their Graphs

14. \(y = \sqrt{x} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \sqrt{x})</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(y = \sqrt{0} = 0)</td>
<td>(0,0)</td>
</tr>
<tr>
<td>1</td>
<td>(y = \sqrt{1} = 1)</td>
<td>(1,1)</td>
</tr>
<tr>
<td>4</td>
<td>(y = \sqrt{4} = 2)</td>
<td>(4,2)</td>
</tr>
</tbody>
</table>

15. \(3x^2 - 4y = 12 \)
 - **x-intercepts:**
 \(3x^2 - 4(0) = 12 \)
 \(3x^2 = 12 \)
 \(x^2 = 4 \)
 \(x = \pm 2 \)
 - **y-intercept:**
 \(3(0)^2 - 4y = 12 \)
 \(-4y = 12 \)
 \(y = -3 \)

 The intercepts are \((-2,0)\), \((2,0)\), and \((0,-3)\).

Check \(x \)-axis symmetry:
\(3x^2 - 4(-y) = 12 \)
\(3x^2 + 4y = 12 \) different

Check \(y \)-axis symmetry:
\(3(-x)^2 - 4y = 12 \)
\(3x^2 - 4y = 12 \) same

Check origin symmetry:
\(3(-x)^2 - 4(-y) = 12 \)
\(3x^2 + 4y = 12 \) different

The graph of the equation has \(y \)-axis symmetry.

16. First we find the slope:
\(m = \frac{8-4}{6-(-2)} = \frac{4}{8} = \frac{1}{2} \)

Next, we use the slope and the given point \((6,8)\) in the point-slope form of the equation of a line:
\(y - y_1 = m(x - x_1) \)
\(y - 8 = \frac{1}{2}(x - 6) \)
\(y - 8 = \frac{1}{2}x - 3 \)
\(y = \frac{1}{2}x + 5 \)

17. \(f(x) = (x+2)^2 - 3 \)

Starting with the graph of \(y = x^2 \), shift the graph 2 units to the left \(y = (x+2)^2 \) and down 3 units \(y = (x+2)^2 - 3 \).
18. \(f(x) = \frac{1}{x} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \frac{1}{x})</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1)</td>
<td>(y = \frac{1}{-1} = -1)</td>
<td>((-1, -1))</td>
</tr>
<tr>
<td>(1)</td>
<td>(y = \frac{1}{1} = 1)</td>
<td>((1, 1))</td>
</tr>
<tr>
<td>(2)</td>
<td>(y = \frac{1}{2})</td>
<td>((2, \frac{1}{2}))</td>
</tr>
</tbody>
</table>

Graph the line \(y = \frac{1}{x} \) for \(x \leq 2 \). Two points on the graph are \((-1, -1)\) and \((1, 1)\).

19. \(f(x) = \begin{cases} 2-x & \text{if } x \leq 2 \\ \lfloor x \rfloor & \text{if } x > 2 \end{cases} \)

Graph the line \(y = 2-x \) for \(x \leq 2 \). Two points on the graph are \((0, 2)\) and \((2, 0)\).

Graph the line \(y = x \) for \(x > 2 \). There is a hole in the graph at \(x = 2 \).

Chapter 2 Projects

Project I – Internet Based Project – Answers will vary

Project II

1. Silver: \(C(x) = 20 + 0.16(x - 200) = 0.16x - 12 \)

 \[C(x) = \begin{cases} 20 & 0 \leq x \leq 200 \\ 0.16x - 12 & x > 200 \end{cases} \]

 Gold: \(C(x) = 50 + 0.08(x - 1000) = 0.08x - 30 \)

 \[C(x) = \begin{cases} 50.00 & 0 \leq x \leq 1000 \\ 0.08x - 30 & x > 1000 \end{cases} \]

 Platinum: \(C(x) = 100 + 0.04(x - 3000) \)

 \[C(x) = \begin{cases} 100.00 & 0 \leq x \leq 3000 \\ 0.04x - 20 & x > 3000 \end{cases} \]

3. Let \(y = \#\text{K-bytes of service over the plan minimum.} \)

 Silver: \(20 + 0.16y \leq 50 \)

 \[0.16y \leq 30 \]

 \[y \leq 187.5 \]

 Silver is the best up to 187.5 K-bytes of service.

 Gold: \(50 + 0.08y \leq 100 \)

 \[0.08y \leq 50 \]

 \[y \leq 625 \]

 Gold is the best from 387.5 K-bytes to 625 + 1000 = 1625 K-bytes of service.

 Platinum: Platinum will be the best if more than 1625 K-bytes is needed.

4. Answers will vary.
Chapter 2: Functions and Their Graphs

Project III

1.

```
\begin{center}
\begin{tikzpicture}
\draw[->, thick] (0,0) -- (1,0) node[anchor=north] {Drapeway \ 2 miles};
\draw[->, thick] (1,0) -- (2,0) node[anchor=north] {Highway \ 5 miles};
\draw[->, thick] (2,0) -- (3,0) node[anchor=north] {Cable box};
\draw[->, thick] (3,0) -- (4,0) node[anchor=north] {Possible route 1};
\draw[->, thick] (4,0) -- (5,0) node[anchor=north] {Possible route 2};
\draw[->, thick] (0,0) -- (0,-1) node[anchor=east] {House};
\end{tikzpicture}
\end{center}
```

Possible route 1: 2 miles

Possible route 2: 5 miles

1.

\[C(x) = 100x + 140L \]
\[C(x) = 100x + 140\sqrt{4 + (5 - x)^2} \]

3.

<table>
<thead>
<tr>
<th>x</th>
<th>(C(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100(0) + 140\sqrt{4 + 25} = 753.92</td>
</tr>
<tr>
<td>1</td>
<td>100(1) + 140\sqrt{4 + 16} = 726.10</td>
</tr>
<tr>
<td>2</td>
<td>100(2) + 140\sqrt{4 + 9} = 704.78</td>
</tr>
<tr>
<td>3</td>
<td>100(3) + 140\sqrt{4 + 4} = 695.98</td>
</tr>
<tr>
<td>4</td>
<td>100(4) + 140\sqrt{4 + 1} = 713.05</td>
</tr>
<tr>
<td>5</td>
<td>100(5) + 140\sqrt{4 + 0} = 780.00</td>
</tr>
</tbody>
</table>

The choice where the cable goes 3 miles down the road then cutting up to the house seems to yield the lowest cost.

4.

Since all of the costs are less than $800, there would be a profit made with any of the plans.

\[C(x) \ \text{dollars} \]

```
\begin{center}
\begin{tikzpicture}
\draw[->, thick] (0,0) -- (5,0) node[anchor=north] {x \text{ miles}};
\draw[->, thick] (0,0) -- (0,8) node[anchor=east] {C(x) \ \text{dollars}};
\end{tikzpicture}
\end{center}
```

Using the MINIMUM function on a graphing calculator, the minimum occurs at \(x = 2.96 \).

6.

\[C(4.5) = 100(4.5) + 140\sqrt{4 + (5 - 4.5)^2} = 738.62 \]

The cost for the Steven’s cable would be $738.62.

7.

\[5000(738.62) = 3,693,100 \] State legislated

\[5000(695.96) = 3,479,800 \] cheapest cost

It will cost the company $213,300 more.

Project IV

1.

\[A = \pi r^2 \]

2.

\[r = 2.2t \]

3.

\[r = 2.2(2) = 4.4 \text{ ft} \]

\[r = 2.2(2.5) = 5.5 \text{ ft} \]

4.

\[A = \pi(4.4)^2 = 60.82 \text{ ft}^2 \]

\[A = \pi(5.5)^2 = 95.03 \text{ ft}^2 \]

5.

\[A = (2.2t)^2 = 4.84\pi t^2 \]

6.

\[A = 4.84\pi(2)^2 = 60.82 \text{ ft}^2 \]

\[A = 4.84\pi(2.5)^2 = 95.03 \text{ ft}^2 \]

7.

\[\frac{A(2.5) - A(2)}{2.5 - 2} = \frac{95.03 - 60.82}{0.5} = 68.42 \text{ ft/hr} \]

8.

\[\frac{A(3.5) - A(3)}{3.5 - 3} = \frac{186.27 - 136.85}{0.5} = 98.84 \text{ ft/hr} \]

9.

The average rate of change is increasing.

10.

150 yds = 450 ft

\[r = 2.2t \]

\[t = \frac{450}{2.2} = 204.5 \text{ hours} \]

11.

6 miles = 31680 ft

Therefore, we need a radius of 15,840 ft.

\[t = \frac{15,840}{2.2} = 7200 \text{ hours} \]