Pages 343-345:

5. Economics and Marketing The following data represent the price and quantity demanded in 2009 for Dell personal

Price (\$/Computer)	Quantity Demanded
2300	152
2000	159
1700	164
1500	171
1300	176
1200	180
1000	189

- (a) Using a graphing utility, draw a scatter diagram of the data with price as the dependent variable.
- (b) Using a graphing utility, build a logarithmic model from the data.
- (c) Using a graphing utility, draw the logarithmic function found in part (b) on the scatter diagram.
- (d) Use the function found in part (b) to predict the number of Dell personal computers that will be demanded if the price is \$1650.
- 10. Cable Subscribers The following data represent the number of basic cable TV subscribers in the United States.

 A market researcher believes that external factors, such as satellite TV, have affected the growth of cable subscribers. She is interested in building a model that can be used to describe the number of cable TV subscribers in the United
 - (a) Using a graphing utility, draw a scatter diagram of the data using the number of years after 1970, t, as the independent variable and number of subscribers as the dependent variable.
 - (b) Using a graphing utility, build a logistic model from the
 - (c) Using a graphing utility, draw the function found in part
 - (b) on the scatter diagram.

 (d) Based on the model found in part (b), what is the maximum number of cable TV subscribers in the United States?
 - (e) Use the model found in part (b) to predict the number of cable TV subscribers in the United States in 2015.

Year	Subscribers (1,000)
1975 (t = 5)	9,800
1980 (t = 10)	17,500
1985 (t = 15)	35,440
1990 (t = 20)	50,520
1992 (t = 22)	54,300
1994 (t = 24)	58,373
1996 (t = 26)	62,300
1998 (t = 28)	64,650
2000 (t = 30)	66,054
2002 (t = 32)	64,556
2004 (t = 34)	65,263
2006 (t = 36)	64,908
2007 (t = 37)	65,913
2008 (t = 38)	66,218

Source: Statistical Abstract of the United States, 2011

In Problems 35-45, solve each equation. Express irrational solutions in exact form and as a decimal rounded to 3 decimal places. Verify your results using a graphing utility.

35.
$$8^{6+3x} = 4$$

Pages 349-351:

36.
$$3^{x^2+x} = \sqrt{3}$$

37.
$$\log_x 64 = -3$$

38.
$$5^x = 3^{x+2}$$

$$39. \ \ 25^{2x} = 5^{x^2 - 12}$$

40.
$$\log_3 \sqrt{x-2} = 2$$

41.
$$8 = 4^{x^2} \cdot 2^{5x}$$

44. $e^{1-x} = 5$

42.
$$2^x \cdot 5 = 10^x$$

45. $9^x + 4 \cdot 3^x - 3 = 0$

43.
$$\log_6(x+3) + \log_6(x+4) = 1$$

- **46.** Suppose that $f(x) = \log_2(x-2) + 1$.
- (c) Solve f(x) = 4. What point is on the graph of f?
- (e) Find $f^{-1}(x)$. Graph f^{-1} on the same Cartesian plane as f.
- (b) What is f(6)? What point is on the graph of f? (d) Based on the graph drawn in part (a), solve f(x) > 0.
- 47. Amplifying Sound An amplifier's power output P (in watts) is related to its decibel voltage gain d by the formula
 - $P = 25e^{0.1d}$

49. Salvage Value The number of years n for a piece of machinery to depreciate to a known salvage value can be found using the formula

$$n = \frac{\log s - \log i}{\log(1 - d)}$$

where s is the salvage value of the machinery, i is its initial value, and d is the annual rate of depreciation.

- (a) How many years will it take for a piece of machinery to decline in value from \$90,000 to \$10,000 if the annual rate of depreciation is 0.20 (20%)?
- (b) How many years will it take for a piece of machinery to lose half of its value if the annual rate of depreciation is 15%?

- (a) Find the power output for a decibel voltage gain of 4 decibels.
- (b) For a power output of 50 watts, what is the decibel voltage gain?
- 48. Limiting Magnitude of a Telescope A telescope is limited in its usefulness by the brightness of the star that it is aimed at and by the diameter of its lens. One measure of a star's brightness is its magnitude; the dimmer the star, the larger its magnitude. A formula for the limiting magnitude \boldsymbol{L} of a
- 51. Funding a College Education A child's grandparents wish to purchase a bond that matures in 18 years to be used for her college education. The bond pays 4% interest compounded semiannually. How much should they pay so that the bond will be worth \$85,000 at maturity?
- 53. Temperature of a Skillet A skillet is removed from an oven whose temperature is 450°F and placed in a room whose temperature is 70°F. After 5 minutes, the temperature of the skillet is 400°F. How long will it be until its temperature is 150°F?