$\qquad$

## SHOW ALL WORK to receive full credit.

Simplify the exponents. (1 point each)

1. $\left(x^{-4}\right)^{-7}=$
2. $x^{-12} \cdot x^{7}=$
3. $\frac{x^{8}}{x^{10}}=$
4. $\left(x^{2}\right)^{-4}=$
5. $x^{-5} \cdot x^{5}=$
6. $\frac{x^{-3}}{x^{-7}}=$

Fractions: Perform the indicated operation. Answers must be left as proper fractions or mixed numbers. Answers must be reduced to lowest terms. (1 point each)
7. $5 \frac{5}{8} \cdot 2 \frac{2}{9}=$
8. $5 \frac{1}{4}-2 \frac{5}{6}=$
9. $\frac{7}{16}+\frac{3}{4}=$
10. $5 \frac{1}{7} \div 1 \frac{1}{14}=$

Solve the following equations. Fraction answers must be reduced to lowest terms, but may be left as either improper fractions or mixed numbers. (4 points)
11. $-8(4 x+3)=3(9-5 x)$
12. $9 x-(-4)-7 x=8-(-6 x)+5$

Give the ordered pairs of each point. (1 point each)
13. A $\qquad$ 14. B $\qquad$
Graph and label each of the following ordered pairs on the grid to the right. (1 point each)
15. $C(2,6)$
16. $D(-3,-5)$

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{B}$. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Complete the domain-range tables, and graph the lines. ( 20 points)

17. | $\boldsymbol{x}$ | $y=\frac{3}{2} x-1$ | $\boldsymbol{y}$ |
| :---: | :---: | :---: |
| -4 |  |  |
| -2 |  |  |
| 0 |  |  |
| 2 |  |  |
| 4 |  |  |



18. | $\boldsymbol{x}$ | $y=-3 x+2$ | $\boldsymbol{y}$ |
| :---: | :---: | :---: |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |



Plot the points, create a slope triangle, and determine the slope. Reduce to lowest terms. (4 points each)
19. $(-2,7)$ and $(3,4)$

slope: $\qquad$
20. $(-4,-2)$ and $(2,8)$

slope: $\qquad$
$\qquad$

## SHOW ALL WORK to receive full credit.

Simplify the exponents. ( 2 points each)

1. $\left(x^{-6}\right)^{-8}=$
2. $x^{4} \cdot x^{-15}=$
3. $\frac{x^{-8}}{x^{-14}}=$

Fractions: Perform the indicated operation. Answers must be left as proper fractions or mixed numbers. Answers must be reduced to lowest terms. (1 point each)
4. $3 \frac{5}{8}+2 \frac{7}{8}=$
6. $\frac{5}{12} \cdot 1 \frac{1}{15}=$
5. $4 \frac{1}{4}-\frac{5}{6}=$
7. $1 \frac{3}{4} \div 2 \frac{5}{8}=$

Complete the domain-range tables, and graph the lines. ( 5 points per table, 3 points per graph)
8.

| $\boldsymbol{x}$ | $y=-\frac{1}{2} x+3$ | $\boldsymbol{y}$ |
| :---: | :---: | :---: |
| -4 |  |  |
| -2 |  |  |
| 0 |  |  |
| 2 |  |  |
| 4 |  |  |


9.

| $\boldsymbol{x}$ | $y=4 x-2$ | $\boldsymbol{y}$ |
| :---: | :---: | :---: |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |
| 2 |  |  |



Plot the points, create a slope triangle, and determine the slope. Reduce to lowest terms. (4 points each)
10. $(-5,2)$ and $(-3,-1)$

slope: $\qquad$
11. $(4,-3)$ and $(-4,-5)$

slope: $\qquad$

Using the formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, find the slope of the line that passes through the given points. (4 points each)
12. $(6,-1)$ and $(9,4)$
13. $(0,5)$ and $(4,3)$

Solve the following equations. Fraction answers must be reduced to lowest terms, but may be left as either improper fractions or mixed numbers. (4 points each)
14. $6 x-7+5 x+2=4 x+3-2 x+1$
15. $-4(2 x-3)=8 x$

