Developing Product Rule and Quotient Rule for Exponents

- 1. Write $x^3 \cdot x^5$ in expanded form and simplify:
- 2. Write $x^7 \cdot x^2$ in expanded form and simplify:
- 3. Write $\frac{x^5}{x^2}$ in expanded form and simplify:
- 4. Write $\frac{x^7}{x^5}$ in expanded form and simplify:
- 5. Write $\frac{x^2}{x^5}$ in expanded form and simplify:
- 6. Write $\frac{x}{x^6}$ in expanded form and simplify:

Rules for Exponents:

- Anything to the 0 power is equal to 1: $x^0 = 1$
- Anything to the 1st power is equal to itself: $x^1 = x$
- Multiplying terms with the same base, keep the base and add the exponents: $x^a \cdot x^b = x^{a+b}$
- Dividing terms with the same base, keep the base and subtract the exponents (top minus bottom): $\frac{x^a}{x^b} = x^{a-b}$
- If you end up with a negative exponent, then make it one over the term to change the exponent to positive: $x^{-a} = \frac{1}{x^a}$

Simplify the following exponent problems. Answers should have one single positive exponent.

1.
$$x^6 \cdot x^5 =$$

2.
$$x^8 \cdot x^{-15} =$$

3.
$$x^{-4} \cdot x^{10} =$$

4.
$$x^{-7} \cdot x^4 =$$

5.
$$x^{-12} \cdot x^{-4} =$$

6.
$$\frac{x^5}{x^3} =$$

7.
$$\frac{x^4}{x^{10}} =$$

8.
$$\frac{x^{-3}}{x^4}$$
 =

9.
$$\frac{x^{-2}}{x^{-6}}$$
 =

10.
$$\frac{x^8}{x^{-7}} =$$

11.
$$\frac{x^{-4}}{x^7} =$$

12.
$$x^{16} \cdot x^{-4} =$$

13.
$$\frac{x^{15}}{x^{-6}} =$$

14.
$$x^{-3} \cdot x^9 =$$