Developing Product Rule and Quotient Rule for Exponents

1. Write $x^{3} \cdot x^{5}$ in expanded form and simplify:
2. Write $x^{7} \cdot x^{2}$ in expanded form and simplify:
3. Write $\frac{x^{5}}{x^{2}}$ in expanded form and simplify:
4. Write $\frac{x^{7}}{x^{5}}$ in expanded form and simplify:
5. Write $\frac{x^{2}}{x^{5}}$ in expanded form and simplify:
6. Write $\frac{x}{x^{6}}$ in expanded form and simplify:

Rules for Exponents:

- Anything to the 0 power is equal to 1: $x^{0}=1$
- Anything to the $1 s t$ power is equal to itself: $x^{1}=x$
- Multiplying terms with the same base, keep the base and add the exponents: $x^{a} \cdot x^{b}=x^{a+b}$
- Dividing terms with the same base, keep the base and subtract the exponents (top minus bottom): $\frac{x^{a}}{x^{b}}=x^{a-b}$
- If you end up with a negative exponent, then make it one over the term to change the exponent to positive: $x^{-a}=\frac{1}{x^{a}}$

Simplify the following exponent problems. Answers should have one single positive exponent.

1. $x^{6} \cdot x^{5}=$
2. $x^{8} \cdot x^{-15}=$
3. $x^{-4} \cdot x^{10}=$
4. $x^{-7} \cdot x^{4}=$
5. $x^{-12} \cdot x^{-4}=$
6. $\frac{x^{5}}{x^{3}}=$
7. $\frac{x^{4}}{x^{10}}=$
8. $\frac{x^{-3}}{x^{4}}=$
9. $\frac{x^{-2}}{x^{-6}}=$
10. $\frac{x^{8}}{x^{-7}}=$
11. $\frac{x^{-4}}{x^{7}}=$
12. $x^{16} \cdot x^{-4}=$
13. $\frac{x^{15}}{x^{-6}}=$
14. $x^{-3} \cdot x^{9}=$
