Direct Variation:

1. If y varies directly as x and $y=25$ when $x=15$, find x when $y=40$.

$$
\begin{aligned}
& y=\frac{5}{3} x \\
& 40=\frac{5}{3} x \\
& x=40 \cdot \frac{3}{5} x=24
\end{aligned}
$$

2. If y varies directly as x and $y=15$ when $x=10$, find y when $x=14$.

$$
\begin{array}{ll}
y=k x & y=1.5 x \\
\frac{15}{10}=\frac{k(10)}{10} & y=(1.5)(14) \\
1.5=k & y=21
\end{array}
$$

3. a is directly proportional to the cube of b. If $a=10$ when $b=2$, find a when $b=4$.

$$
\begin{array}{ll}
a=k b^{3} & a=\frac{5}{4} b^{3} \\
10=k(2)^{3} & \\
\frac{10}{8}=\frac{5}{8}=\frac{5}{4}(4)^{3} \\
k=8 & a=80
\end{array}
$$

4. y is directly proportional to the square of x. If $y=12$ when $x=4$, find y when $x=6$.

$$
\begin{array}{rl}
y=k x^{2} & y \\
=\frac{3}{4} x^{2} \\
12=k(4)^{2} & \\
\frac{12}{16}=\frac{k(16)}{16} & \\
\frac{3}{4}=k & \\
& =\frac{3}{4}(6)^{2} \\
y & =27
\end{array}
$$

Inverse Variation:
5. If y varies inversely as q and $y=22$ when $q=6$, find q when $y=15$.

$$
\begin{array}{ll}
y=\frac{k}{q} & y=\frac{132}{q} \\
22=\frac{k}{6} & 15=\frac{132}{8} \\
k=6.22=132 & \frac{15 q=\frac{132}{15}}{15}
\end{array}
$$

6. If c is inversely proportional to d and $c=2$ when $d=$
3.6,

$$
\begin{array}{ll}
C=\frac{k}{k} & k=(3.6)^{2} \\
2=\frac{k}{3.6} & k=7.2
\end{array}
$$

a. find c when $d=4.3 \cdot 6$
b. find d when $C=6.4$

$$
\begin{aligned}
& C=\frac{7.2}{4.5} \\
& C=1.6
\end{aligned}
$$

$$
\begin{aligned}
6.4 & =\frac{7.2}{Q} \\
\frac{6.4 Q}{6.4} & =\frac{7.2}{6.4} \\
d & =1.125
\end{aligned}
$$

Joint Variation:
7. If r varies jointly as s and t and inversely as u, and $r=18$ when $s=2, t=3$, and $u=4$, find s when $r=6, t=2$, and $u=4$.

$$
\begin{aligned}
& r=K \frac{s \cdot t}{u} \\
& 18=k(2)(3) \\
& 18=k\left(\frac{3}{2}\right)^{4} \\
& K=18 \text {. } \frac{2}{3}
\end{aligned}
$$

\#8 is below
\downarrow

$$
\begin{aligned}
& \left(\begin{array}{l}
\frac{12 s t}{u} \\
6=\frac{12 s(2)}{4} \\
6=\frac{24}{4} s \\
\frac{6}{6}=6 s \\
s=1
\end{array}\right.
\end{aligned}
$$

8. Suppose r varies jointly as t and s, and inversely as the square of v. When $t=3, s=18$, and $v=5, r=3.78$. Find r when $t=4, s=12$, and $v=4$.

$$
\begin{array}{rlr}
\text { When } \begin{aligned}
t & =4, s=12, \text { and } v=4 . \\
r & =k \frac{t \cdot s}{v^{2}} \\
3.78 & =k \frac{(3)(1.8)}{(5)^{2}}
\end{aligned} & r=1.75 \frac{t \cdot s}{V^{2}} \\
3.78=k\left(\frac{54}{25}\right) & & =1.75 \frac{12)}{4^{2}} \\
k & =3.78\left(\frac{25}{16}\right. \\
k & =1.75 \\
54 & & r
\end{array}
$$

