to get a LCD, we must multiply the denominators together.

Combine, simplify and state domain restrictions:

$$
\begin{aligned}
& \text { ex } \frac{\mathbf{1 5}}{\mathbf{x}^{2}+\mathbf{3 x}} \Theta \frac{\mathbf{x - 2}}{\mathbf{x + 3}} \\
& =\frac{15}{x(x+3)}-\frac{(x-2) \cdot x}{(x+3) \cdot} \\
& =\frac{15-\left(x^{2}-2 x\right)}{x(x+3)} \\
& =\frac{15-x^{2}+2 x}{x(x+3)} \\
& \text { rearranas }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rearrange } \\
& \text { numerator }
\end{aligned}=\frac{-x^{2}+2 x+15}{x(x+3)}
$$

$$
\text { factor -1 }=\frac{-1\left(x^{2}-2 x-15\right)}{x(x+3)}
$$

$$
=\frac{-1(x+3)(x-5)}{x(x+3)}
$$

$$
\underbrace{\left.-\frac{x-5}{x}, x \neq \frac{D R}{0,-3}\right]}_{\text {or }}
$$

$$
\frac{5-x}{x}, x \neq 0,-3
$$

$$
\begin{aligned}
& \left(\frac{2 x+5}{2 x+5}\right)\left(\frac{6 x}{3 x-1}\right)+\left(\frac{-4 x}{2 x+5}\right)\left(\frac{3 x-1}{3 x-1}\right) \\
& =\frac{12 x^{2}+30 x-12 x^{2}+4 x}{(2 x+5)(3 x-1)} \\
& \text { remember to change that minus to plus a } \\
& \text { Don'T forget } \\
& \text { domain restrictions }
\end{aligned}
$$

Ex 3 :
Factor each denominator so we can see what the LCD is going to be.

$$
\begin{aligned}
& =\frac{6(x+2)}{x(x-2)(x+2)}+\frac{-1}{(x+2)(x-2)} \cdot x \\
& =\frac{6 x+12-x}{x(x-2)(x+2)} \\
& =\frac{5 x+12}{x(x-2)(x+2)}, x \neq 0, \pm 2
\end{aligned}
$$

Simplify each complex fraction.

$$
\begin{aligned}
\frac{\text { Ex 4: } \frac{1}{4}}{\frac{2}{y}} & =\frac{1}{4} \div \frac{2}{y} \\
& =\frac{1}{4} \cdot \frac{y}{2} \\
& =\frac{y}{8}>y \neq 0
\end{aligned}
$$

Simplify each complex fraction.

Ex 6: $\frac{1}{\frac{a}{a} \cdot 1+\frac{1}{a}}+\frac{1}{a} 1-\frac{1}{a}$
you gotta love this one!!! (4)
Start by getting common denominators in the denominators!

