8.5 Adding and subtracting rational expressions

The key to adding and or subtracting rational expressions is COMMON DENOMINATORS!!!

$$
\text { ex.1: } \frac{\mathbf{3}}{\boldsymbol{x}^{2}}+\frac{5}{\boldsymbol{x}^{2}}=\frac{8}{x^{2}}
$$

Domain restrictions:

$$
x \neq \square
$$

ex: $\frac{\mathbf{2 x}}{\boldsymbol{x}+\mathbf{3}}+\frac{\mathbf{5}}{\boldsymbol{x}+\mathbf{3}}=\frac{2 x+5}{x+3}$
Domain restrictions: $x \neq 3$
ex 3 :

Domain restrictions:

$$
x \neq 3
$$

$$
x+3, x \neq 3
$$

ex 5: $\frac{\mathbf{2 x}}{\boldsymbol{x}-\mathbf{5}} \bigcirc \frac{10}{\boldsymbol{x}-\mathbf{5}} \div \frac{2 x-10}{x-5}=\frac{2(x-5)}{x-5}$

$$
x \neq 5
$$

$$
=2, x \neq 5
$$

Combine, simplify and state domain restrictions:

$$
\begin{aligned}
& \text { ex. } 6 \frac{x}{x+6}+\frac{72}{x^{2}-36} \\
& \frac{x \cdot(x-6)}{(x+6)(x-6)}+\frac{72}{(x+6)(x-6)} \quad \frac{x^{2}-6 x+72}{x^{2}-36} ; x \neq \pm 6 \\
& =\frac{x^{2}-6 x+72}{(x+6)(x-6)}, x \neq \pm 6 \\
& \begin{array}{ll}
1.72 & 2.2 \cdot 2 \cdot 3 \cdot 3 \\
2.36 &
\end{array} \\
& 4.18 \\
& 6 \cdot 12
\end{aligned}
$$

$E x 7 \quad \frac{3 x}{x-1} \bigoplus \frac{x-2}{x^{2}-x}$

$$
\begin{aligned}
& \frac{3 x \cdot x}{(x-1) \cdot \frac{x}{x}}+\frac{-1(x-2)}{x(x-1)} \\
= & \frac{3 x^{2}+(-x)+2}{x(x-1)} \\
= & \frac{3 x^{2}-x+2}{x(x-1)}, x \neq 0,1 \text { Can this be simplified? ? Nothing } \\
& \text { NO }
\end{aligned}
$$

