7.1 Compound Interest Notes

$\mathrm{P}-$ principal (\$ you invest)

$$
\begin{array}{cc}
\text { quarterly } & n=4 \\
\text { weekly } & n=52 \\
\text { daily } & n=365
\end{array}
$$

$r-$ annual interest rate (expressed as a decimal)
$\mathrm{n}-/ /$ of time interest is compounded
t^{-}time in ycars
T.x. 1 Find the linal amount of a $\$ 100$ investment alte 10 years at 5% nterest compounded annually,

Fx. 2 Which will yicld more money? Investing $\$ 2000$ for 4 years, compounded semi-annually at 3.7% or investing $\$ 1600$ for 6 years, compounded

$$
\begin{aligned}
& \text { Compound Interest Formula }{ }^{\text {annually } n=1} \\
& \Lambda(t)=P\left(1+\frac{r}{n}\right)^{n t} \quad \begin{array}{c}
\text { annually } \\
\text { seminanually } \\
\text { monthly }
\end{array} \begin{array}{c}
n=1 \\
n=2 \\
\text { muanta }
\end{array}
\end{aligned}
$$

w2d4 computer prob response. notebook
Ex. 3 Maria bought a computer for $\$ 1297$ five years ago. Unfortunately, it was stolen and her insurance company claims that the value depreciates 14% each year. How much money was her insurance company willing to give her for her stolen computer?
"decay"

$$
\text { multiplier } 1-.14=.86
$$

$$
V=1297(1-.14)^{5}
$$

$$
=\$ 610.14
$$

