Graph $y=2^{x .}$ Graphing an Exponential Function

1) Make a table of values.
2) Plot and connect the points.
(You don't need a calc for this)

Two types of exponential behavior are $\quad \bullet \bullet$ exponential growth and exponential decay.

For exponential growth, as the value of x increases, the value of y increases. For exponential decay, as the value of x increases, the value of y decreases, approaching zero.

The exponential functions shown here are asymptotic to the x-axis. An asymptote is a line that a graph approaches as x or y increases in absolute value.

Concept Summary Exponential Functions

For the function $y=a b^{x}$,

- if $a>0$ and $b>1$, the function represents exponential growth.
- if $a>0$ and $0<b<1$, the function represents exponential decay.

In either case, the y-intercept is $(0, a)$, the domain is all real numbers, the asymptote is $y=0$, and the range is $y>0$.

Open your packet and use your calculator, make a quick sketch of each. Is it an exponential growth or exponential decay? What's the y-intericept?

1. $y=4(2.3)^{x}$

2. $y=\frac{2}{5}\left(\frac{43}{2}\right)^{x}$

$$
\begin{aligned}
& y=\frac{2}{5}\left(\frac{43}{2}\right)^{0} \\
&=\frac{2}{5}(0,2 / 5) \\
& y-\text { int }
\end{aligned}
$$

exp growth
6. $y=\left(\frac{2}{3}\right)^{-x} \quad y=\frac{2^{-0}}{3}$

$(0,1)$ y int exp decay

Copy these at the bottom of your note paper

Without graphing, determine whether the function represents exponential growth or exponential decay. Then find the y-intercept.

1. $y=120(.95)^{x}$
exp. decay
\qquad
$=120$
$(0,120) y$-int
2. $y=.25(1.5)^{x}$ exp growth

$$
\begin{aligned}
& y=.25(6.5)^{0} \\
& y=.25 \\
& (0, .25) y \text {-int }
\end{aligned}
$$

3.

$$
\begin{aligned}
& y=(3)^{-x} \\
& y=\left(\frac{1}{3}\right)^{x} \\
& \exp \text { decay } \\
& y=3^{-0}=1 \\
& (0,1) \text {-int }
\end{aligned}
$$

7.1 Exponential Growth and Decay

Ex. 1 Find the multiplier for each rate of exponential growth or decay.

b) 12% decay

d) 0.12% growth

Ex. 2 You have a certain bacteria that quadruples every hour. If you start with 50 bacteria, how rainy will you have after:
a) 2 hours? 4 is 4 times multiplier 6 hours?
c) n hours?

1 hour

$$
q(4) \text { initial value }
$$

Ex. 3 2010, the population of Sunnyplace was 14,126

$$
\begin{aligned}
& \text { Predict he population: } \\
& \text { mut } t
\end{aligned}=1.24=1.24
$$

b) in 2035

$$
\begin{aligned}
& \text { ain } 2202(1.24) \\
& 14126 \text {) } \\
& =17,516 \text { people) }
\end{aligned}
$$

Ex. 4 The rate at which caffeine is eliminated from the bloodstream is about 15% per hour. After drinking a soda, the amount of caffeine
$1-.15=.85$ multiplier
Predict the amount (nearest tenth) of caffeine remaining;
$\begin{array}{ll}\text { a) } 1 \text { hour after the peak level } & 30(.85)=25.5 \mathrm{mg} \\ \text { b) } 4 \text { hours after the peak level } & 30(.85)^{4}=15.7 \mathrm{mg}\end{array}$
c) n hours after the peak level

$$
c=30(.85)^{n}
$$

$$
\begin{aligned}
& 50(4)=200 \quad 50(4)^{6} \\
& 200(4)=\begin{array}{l}
800 \\
6 \text { bacteria }
\end{array} \begin{array}{r}
204,800 \\
\text { bacteria }
\end{array}
\end{aligned}
$$

