Graphing an Exponential Function

Graph $y = 2^{x}$.

Open your packet and use your calculator, make a quick sketch of each. Is it an exponential growth or exponential decay? What's the y-intercept?

Copy these at the bottom of your note paper

Without graphing, determine whether the function represents exponential growth or exponential decay. Then find the y-intercept.

1.	$y = 120(.95)^{x}$	2. $y = .25(1.5)^x$	3. $y = (3)^{-x}$
	exp. decay	exp growth	$y = \left(\frac{1}{3}\right)^{\times}$
	y=120(.95)°	y=.25(1.5)	
	= 120	y=.25	exp decay
	(0,100) y-int	(0,.25) y-int	y=3 ⁻⁰ =1
			(0,1) y-int

7.1 Exponential Growth and Decay

Ex. 1 Find the multiplier for each rate of exponential growth or decay.

a)
$$15\% \text{ growth} = 1.15$$

b) $12\% \text{ decay} = .02$
c) $4.061\% \text{ decay} = .04061$
d) $0.12\% \text{ growth} = .0012$
 $= 1.0012$
Ex. 2 You have a certain bacteria that buadruples pevery
how. If you start with 50 bacteria, how many will you have
after: $4.5 \text{ (fr)} \text{ first} = 4.4 \text{ trimes}$
 $4.5 \text{ (fr)} \text{ first} = 4.4 \text{ trimes}$
 $4.5 \text{ (fr)} \text{ first} = 4.4 \text{ trimes}$
 $4.5 \text{ (fr)} \text{ first} = 4.4 \text{ trimes}$
 $4.5 \text{ (fr)} \text{ first} = 4.4 \text{ trimes}$
 $4.5 \text{ (fr)} \text{ first} = 4.4 \text{ trimes}$
 $4.5 \text{ (fr)} \text{ first} = 4.24 \text{ for the population of Sumpplace was 14,126}$
and is projected to grow at a rate of 24% per decade. Every 10 years
 $\text{mod} = 1.4 \cdot .24 = 1.24$
a) in 2020
 $14.126(1.24)$
 $= 1.4 \cdot .24 = 1.24$
 $= 24.186 \text{ people}$
Ex. 4 The rate at which cafferine is summated from the bloodstream is
about 15% per hour. After diving a soda, the amount of cafferine
reaches a peak level of 30 mg. $2e \text{ cag} = 1.5 \text{ for multiplier}$
Predict the people of 30 mg $2e \text{ cag} = 1.5 \text{ for multiplier}$
 1.163 product
 1.163 product
 $1.163 \text{ product} = 30(.85) = 1.5 \text{ for multiplier}$