More solving equations

$$
\begin{aligned}
& \text { 1. } \log 4+2 \log x=6 \\
& \log 4+\log x^{2}=6 \\
& \log _{\text {for }}\left(m \rightarrow \log _{10}\left(4 x^{2}\right)=6\right. \\
& \frac{10^{6}}{4}=\frac{4 x^{2}}{4} \\
& \frac{10^{6}}{4}=x^{2} \\
& \pm \sqrt{\frac{10^{6}}{4}}=x \\
& \text { so } x=500
\end{aligned}
$$

$\pm 500=x \longleftarrow$ check answer in ORIGINAL equation.

$$
\begin{aligned}
\log 4+2 \log (-500 & =6 \\
\log 4+2 \log 500 & =6 \\
6 & =6 v
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \log x=\log \left(2 x^{2}\right)-2 \\
& \log x-\log \left(2 x^{2}\right)=-2 \\
& \log \left(\frac{x}{2 x^{2}}\right)=-2 \\
& 10^{-2}=\frac{x}{2 x^{2}} \\
& \frac{1}{10^{2}}=\frac{x}{2 x^{2}} \\
& \frac{1}{100}=\frac{x}{2 x^{2}} \\
& 2 x^{2}=100 x \\
& 2 x^{2}-100 x=0 \\
& 2 x(x-50)=0 \\
& 2 x=0 \text { or } x-50=0 \\
& x=0 \text { or } x=50 \\
& \text { so } x=50
\end{aligned}
$$

Get single log on left side What is the base?
Go to exponential form

Cross products are equal

ANOTRR WAY
3.

$$
\begin{aligned}
& \log _{2}\left(x^{2}-8 x+40\right)=\log _{2}(3 x-4)+1 \\
& \log _{2}\left(x^{2}-8 x+40\right)=\log _{2}(3 x-4)+\log _{2} 2
\end{aligned}
$$

$$
\log _{2}\left(x^{2}-8 x+40\right)=\log _{2}[2(3 x 4)]
$$

get single log on BOTH sides

$$
x^{2}-8 x+40=2(3 x-4)
$$

$$
\begin{aligned}
& x^{2}-8 x+40=6 x-8 \\
& -6 x+8
\end{aligned}
$$

$$
-6 x+8-6 x+8
$$

$$
x^{2}-14 x+48=0
$$

$$
(x-8)(x-6)=0
$$

$$
x-8=0 \text { or } x-6=0
$$

$$
x=8 \text { or } x=6
$$

4.

$$
\begin{gathered}
\log (x-3)+\log 2=3 \\
\log (x-3)(2)=3 \\
10^{3}=(x-3) 2 \\
\frac{10^{3}}{2}=x-3 \\
\frac{10^{3}}{2}+3=x \\
x=503
\end{gathered}
$$

