$$
\mathrm{y}=\log _{\mathrm{e}} \mathrm{x} \text { is the inverse of natural exponential function } \mathrm{y}=\mathrm{e}^{\mathrm{x}}
$$

Some information about e.

1. The natural base, e, is used to estimate the ages of artifacts.
2. The value of $1\left(1+\frac{1}{n}\right)^{n}$ when n is large approaches $2.71828 \ldots=e$
3. The 18th century Swiss mathematician, Leonhard Euler. "discovered" the natural exponential, so named after him. (the "e")
4. e is an irrational number; it's decimal value is approximately 2.71828182845904 .
$\mathrm{y}=\log _{\mathrm{e}} \mathrm{x}$ is abbreviated $\mathrm{y}=\ln \mathrm{x}$ ("y equals the natural \log of $\mathrm{x} "$
Warning: If you eventually progress to much-more advanced mathematics, you may find that sometimes " $\log (x)$ " means the base- e log or even base- 2 log, rather than the common log.

Write each expression as a single natural logarithm.

1. $\ln 32 \ominus \ln 8$

$=\ln \frac{32}{8}$

$$
=\ln 4
$$

2. $3 \ln 6+\ln 5$

$=\ln 6^{3} \oplus \ln 5$
$=\ln \left(6^{3.5}\right)$
$=\ln 1080$

Solve each equation. Check your answers.

$$
\begin{aligned}
& \text { 3. } \ln (x-4)=5 \\
& \log _{e}(x-4)=5 \\
& e^{5}=x-4 \\
& x=e^{5}+4 \text { exact } \\
& \text { decimal approx. } \\
& \text { 4. } \ln 2 x \oplus \ln 3=2 \\
& \ln (3 \cdot 2 x)=2 \\
& \ln 6 x=2 \\
& \frac{e^{2}}{6}=\frac{6 x}{6} \text { goto.form } \\
& x \approx 152.41 \\
& \text { check in sal } \\
& \text { exact } x=\frac{e^{2}}{6} \\
& \ln \left(e^{5}+4-4\right) ? 5
\end{aligned}
$$

Use natural logarithms to solve each equation.
5. $e^{x-2}=12$ write form

$$
\begin{aligned}
& \log f \\
= & x-2 \\
= & x-\partial
\end{aligned}
$$

$$
\begin{aligned}
\log _{e} 12 & =x-2 \\
\ln 12 & =x-2
\end{aligned}
$$

6. $e^{3 x}+5=15$ isolate var. first

$$
\text { exact } x=\ln 12+2 \quad \frac{\ln 10}{3}=\frac{3 x}{3}
$$

$\underset{\operatorname{approx}}{\operatorname{decim}} x \approx 4.48 \quad$ exact $x=\frac{\ln 10}{3}$

$$
\underset{a p p r o x}{\text { decimal }_{a}} x \approx 0.77
$$

Simplify each expression.
7. $\ln e=\log _{e} e^{\prime}$ 8. $\ln e^{3}=\log _{e} e^{3}$ 9. $\frac{\ln e^{2}}{6}$

$$
=1
$$

$$
=3
$$

$$
=\frac{2}{6}=\frac{1}{3}
$$

