Example 1:
Mary invested $\$ 800$ at 3.5% compounded quarterly. $n=4$ at the
a) How long will it take for her investment to double in value? Round to nearest tenth.

$$
\begin{aligned}
A(t) & =P\left(1+\frac{r}{n}\right)^{n} \\
1600 & =\frac{800}{800}\left(1+\frac{.035}{4}\right)^{4} t \\
200 & =\left(1+\frac{.035}{4}\right)^{4 t} \\
\log 2 & =\log \left(1+\frac{.035}{4}\right)^{4 t}=\frac{\log 2}{\log \left(1+. \frac{035}{4}\right)} \\
\log 2 & =4 t \log \left(1+\frac{.035}{4}\right)
\end{aligned}
$$

b) How long will it take for her investment to triple in value? Round to nearest tenth.

Example 2:
The United States public debt, in billions of dollars, has been estimated with the model $\boldsymbol{y}=\mathbf{0 . 0 5 1 5 1 7 (1 . 1 3 0 6 7 2 7)}$.
The exponent represents the number of years since 1990.
a) How long will it take to double the public debt?(Sometimes called the doubling time.)

$$
\begin{aligned}
& 2=(1.1306727)^{x} \\
& \log 2=\log (1.1306727)^{x} 5.6 \text { years } \\
& \frac{\log 2}{}=x \frac{\log (1.1306727)}{\log (1.1306727)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log 3}{\log 1.136727}=x \\
& \left(x^{2} 8.9\right. \text { years }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Change of base } \\
& \text { formula. }
\end{aligned}
$$

Example 3
A certain bacteria grows at a rate of 31.5% per hour r. $B=I(1+.315)^{h}$
a) How long will it take to double the population?

$$
2=(1.315)^{h}
$$

gotolog form $\log _{1.315} 2=h$
change of base formulas $\quad h=\frac{\log 2}{\log 1.315}$
b) How long will it take to triple the population?

$$
3=1.315^{h}
$$

take $\log \begin{aligned} & \text { ofeach } \\ & \text { side }\end{aligned} \log 3=\log 1.315^{h}$

$$
\begin{gathered}
\text { power property } \frac{\log 3}{\log 1.315}=\frac{h \log 1.315}{\log 1315} \\
\text { h~4.0 hours }
\end{gathered}
$$

