7.5 continued more things to do with logs!
solve for x :

$$
\log _{3}\left(x^{2}+7 x-5\right)=\log _{3}(6 x+1)
$$

well, if there is one SINGLE log on the right side and one SINGLE log on the left side of the equation, and the logs are the SAME base, then the polynomials in the () must be equal.
so:

solve for x , be sure to check
one to one

2. $\log _{b} 8=\log _{b} x+\log _{b}(x-2)$

Checking answer
$\log _{b} 8=\log _{0}(-2)$
3. $2 \log _{3} x=\log _{3} 4$ Hint: use the power exponent rule

$$
\begin{gathered}
\log _{3} x^{2}=\log _{3} 4 \\
x^{2}=4 \\
x= \pm 2
\end{gathered}
$$

checking in $O R 1 G / N A L$

$$
\begin{aligned}
& 50 \\
& x=2
\end{aligned}
$$

$$
2 \log _{3}(-2) \neq \log _{3} 4,
$$

$$
\begin{array}{cc}
\begin{array}{c}
\text { solve for } x, \text { be sure to check }
\end{array} & \frac{\text { checking }}{} \\
\text { 4. } \log _{7}\left(x^{2}-1\right)=\log _{7} 8 & \log _{7}\left((-3)^{2}-1\right)=\log _{7} 8 \\
x^{2}-1=8 & \log _{7} 8=\log _{7} 8 \\
x^{2}-9=0 & \log _{7}\left(3^{2}-1\right)=\log _{7} 8 \\
(x+3)(x-3)=0 & \log _{7} 8=\log _{7} 8 \\
x+3=0 \text { or } x-3=0 & x=-3 \text { or } x=3
\end{array}
$$

$$
\text { 5. } \begin{aligned}
& 2 \log _{2}(x+2)=\log _{2}(3 x+16) \quad \begin{array}{c}
\text { Use } \\
\text { power } \\
\text { proper }
\end{array} \\
& \log _{2}(x+2)^{2}=\log _{2}(3 x+16) \\
&(x+2)^{2}=3 x+16 \\
& x^{2}+4 x+4=3 x+16 \\
&-3 x-16-3 x-16 \\
& x^{2}+x-12=0 \\
&(x+4(x-3)=0 \\
& x+4=0 \text { or } x-3=0 \\
& x=-4=3 \\
& \frac{\text { check }}{2 \log _{2}(-4+2)}=\log _{2}(3(-4)+16) \\
& \text { nope }=\log _{2} 4 \\
& 2 \log _{2}(-2) \\
& \text { not possible so } x=3
\end{aligned}
$$

6.

$$
\begin{aligned}
& \log (3 x+2)=\log (x-8)+1 \\
& \log (3 x+2)-\log (x-8)=1 \\
& \log \left(\frac{3 x+2}{x-8}\right)=1 \\
& \frac{10}{1}=\frac{3 x+2}{x-8} \quad g 0 \text { to exp form. } \\
& 10(x-8)=3 x+2 \\
& 10 x-80=3 x+2 \\
& -3 x+80-3 x+80 \\
& \frac{7 x}{7}=\frac{82}{7}
\end{aligned}
$$

