7.5 notes: using logs!!

Use logs to solve for x...round to the nearest hundredth

1.
$$5^x = 62$$

We need to get the x out of the exponent. If we take the log of both sides, then our power log rule will allow us to

$$\log 5^z = \log 62$$

take the log of both sides Common.

$$x \log 5 = \log 62$$

now bring the x down as a coefficient

$$\frac{x\log 5}{\log 5} = \frac{\log 62}{\log 5}$$

divide both sides by log5 to solve for x

 $x = \frac{\log 62}{\log 5} \approx 2.56$ use your calculator $\log(62)$ enter $\log(5)$ enter; round to nearest hundredth

Will this work if we take the In of both sides???? Let's see!!!

natural log

2.
$$2^{x+1} = 42$$
 $\ln(2^{x+1}) = \ln 42$
 $(x+1) \ln 2 = \ln 42$
 $\ln 2 = \ln 42$

Other loose ends to tie up...

Evaluate:

1.
$$\log_3 19 = \frac{\log_3 19}{\log_3 19} = X$$

5° = 19 Looks like what we
$$0.95 \times 0.99 \times 0$$

Now, try these. Look for a pattern.

Change of Base Formula

For any positive numbers m,b and c with $b \neq 1$ and $c \neq 1$,

$$\log_b m = \frac{\log_c m}{\log_c b}$$

We are looking for a pattern...

Evaluate:

1.
$$\log_5 5^9$$

2.
$$\log_7 7^8 = \times$$

3.
$$\log_3 3^{40} = X$$

$$3^{x} = 3^{40}$$

$$X = 40$$

Hint: Write in exponential form
$$\log_5 5^9$$

$$\log_5 5^9 = X$$

$$5^{\times} = 5^{\circ}$$

$$X = 9$$

See anything????

5.
$$4^{\log_4 7}$$

$$\begin{array}{c|c}
5 \log_5 9 = x \\
\log_5 x = \log_5 9
\end{array}$$

See anything????

Exponential-Logarithmic Inverse Properties

For b > 0 and $b \neq 1$:

$$\log_b b^x = x \quad and \quad b^{\log_b x} = x \quad for \quad x > 0$$

Try these (use log properties):

1.
$$\log_3 7 - \log_3 63 = \log_3 \left(\frac{7}{63}\right)$$

= $\log_3 \left(\frac{1}{9}\right)$
= $\log_3 \left(\frac{1}{3^2}\right)$
= $\log_3 3^2 = -2$

1.
$$\log_3 7 - \log_3 63 = \log_3(\frac{1}{63})$$

$$= \log_3(\frac{1}{4})$$

$$= \log_3(\frac{1}{3^3})$$

$$= \log_3 3^2 = -2$$
2. $\frac{1}{2}\log_2 6 - \log_2 \sqrt{48}$

$$= \log_3 6 - \log_3 48^{\frac{1}{2}} = \frac{1}{2}\log_3 6 - \frac{1}{2}\log_3(48)$$

$$= \frac{1}{2}(\log_3 6 - \log_3 48)$$

$$= \frac{1}{2}(\log_3 6 - \log_3 48)$$

$$= \frac{1}{2}\log_3 6 - \log_3 48$$

$$= \frac{1}{2}\log_3 (\frac{1}{3})$$
3. $2\log(x+2) = \frac{1}{2}$
what is the base? 10

3.
$$2\log(x+2)=1$$
 $\log(x+2)=\frac{1}{2}$
 $\log(x+2)=\frac{1}{2}$
what is the base? ID

90 to
 $10^{\frac{1}{3}}=X+2$
form
 $10-2=X$
 $10-2=X$
 10 c ready form