7.5 notes: using logs!!

Use logs to solve for x ...round to the nearest hundredth

1. $5^{x}=62$

$$
\log 5^{x}=\log 62
$$

We need to get the x out of the exponent. If we take the log of both sides, then our power log rule will allow us to do that.
take the $\underline{l o g}$ of both sides
common.

$$
x \log 5=\log 62
$$

$$
\frac{x \log 5}{\log 5}=\frac{\log 62}{\log 5} \quad \text { divide both sides by log } 5 \text { to solve for } x
$$

Calculator ready

$$
\boldsymbol{x}=\frac{\log 62}{\log 5}=2.56 \quad \begin{aligned}
& \text { use your calculator } \log (62) \text { enter } / \log (5) \text { enter; round } \\
& \text { to nearest hundredth }
\end{aligned}
$$

Will this work if we take the In of both sides???? Let's see!!! natural \log
2. $2^{x+1}=42$

$$
\begin{aligned}
\ln \left(2^{x+1}\right) & =\ln 42 \\
(x+1) \frac{\ln 2}{\ln 2} & =\frac{\ln 42}{\ln 2} \quad \text { Use power property } \\
x+1 & =\frac{\ln 42}{\ln 2} \\
x & =\frac{\ln 42}{\ln 2}-1 \quad \begin{array}{c}
\text { calculator } \\
\text { ready }
\end{array} x \approx 4.39
\end{aligned}
$$

3. $\underset{-8}{8}+4^{x}=19 \quad$ isolate exp. part list before taking $\log _{\substack{\text { Of } \\ \text { BOTH } \\ \text { SIDE }}}$

$$
4^{x}=11
$$

$$
\log 4^{x}=\log 11
$$

$$
\begin{aligned}
& \log 4^{x}=\log 11 \\
& \times \frac{\log 4}{\log 4}=\frac{\log 11}{\log 4} \longleftarrow \text { cal } \begin{array}{l}
\text { ready }
\end{array} \quad x \approx 1.73
\end{aligned}
$$

4. $10-5^{x}=4$

$$
\frac{-5^{x}}{-1}=\frac{-6}{-1}
$$

$$
\begin{array}{rlr}
5^{x} & =6 & \text { calc ready } \\
\times \frac{\log 5^{x}}{}=\log 6 & \text { to nearest hundredth } \\
\times \frac{\log 5}{\log 5}=\frac{\log 6}{\log 5} & x=\frac{\log }{\log 5} &
\end{array}
$$

Other loose ends to tie up...
Evaluate:

$$
\begin{aligned}
& \text { 1. } \log _{5} 19=\frac{\log 19}{\log 5} \\
& \underbrace{5^{x}=19}_{\log _{5} 19=x} \\
& \log 5^{x}=\log 19 \text { just learned to solve, } \\
& \text { so solve. } \\
& \frac{\log 5}{\log ^{5} 5}=\frac{\log 19}{\log 5} \quad \text { so } \quad x=\frac{\log 19}{\log 5}
\end{aligned}
$$

Now, try these. Look for a pattern.

$$
\begin{aligned}
& \text { 2. } \log _{19} 499=x=\frac{\log 499}{\log 19} \cdot \log _{x x} 36=\frac{\log 36}{\log 95} \\
& \log 19^{x}=\log 499 \\
& x \log 19=\log 499
\end{aligned}
$$

Change of Base Formula
For any positive numbers m, b and c with $\mathrm{b} \neq 1$ and $\mathrm{c} \neq 1$,

$$
\log _{b} m=\frac{\log _{c} m}{\log _{c} b}
$$

We are looking for a pattern...
Evaluate:

1. $\log _{5} 5^{9}$

Hint: Write in exponential form

$$
\begin{aligned}
& \log _{5} 5^{9}=x \\
& 5^{x}=5^{9} \\
& x=9
\end{aligned}
$$

2. $\log _{7} 7^{8}=x$

$$
\begin{aligned}
& 7^{x}=7^{8} \\
& x=8
\end{aligned}
$$

3. $\log _{3} 3^{40}=x$

$$
\begin{aligned}
& 3^{x}=3^{40} \\
& x=40
\end{aligned}
$$

4. $5^{\log _{5} 9}$

Hint: Write in log form

- Sée ánything???? export

5. $4^{\log _{4} 7}$
$\log _{4} x=\log _{4} t$ $x=7$

See anything????

$$
12^{\log _{12} 71}=71
$$

Exponential-Logarithmic Inverse Properties

For $b>0$ and $b \neq 1$:

$$
\log _{\underline{\underline{b}}} b^{x}=x \text { and } b^{\log _{6} x}=x \text { for } x>0
$$

Try these (use log properties):

1. $\log _{3} 7-\log _{3} 63=\log _{3}\left(\frac{7}{63}\right)$

$$
\begin{aligned}
& =\log _{3}\left(\frac{1}{9}\right) \\
& =\log _{3}\left(\frac{1}{3^{2}}\right) \\
& =\log _{3} 3^{2}=-2
\end{aligned}
$$

2. $\frac{1}{2} \log _{2} 6-\log _{2} \sqrt{48}$
$\begin{aligned} \frac{1}{2} \log _{2} 6-\log _{2} 48^{1 / 2} & =\frac{1}{2} \log _{2} 6-\frac{1}{2} \log (48) \\ & =\frac{1}{2}\left(\log _{2} 6-\log _{2} 48\right) \\ & =\frac{1}{2} \log _{2} \frac{6}{48}=\frac{1}{2} \log _{2}\end{aligned}$
$=\frac{1}{2} \log _{2} \frac{6}{48}=\frac{1}{2} \log _{2} \frac{1}{8}$
Solve this:
3. $\frac{2 \log (x+2)=\frac{1}{2}}{2}$ $=\frac{\frac{1}{2} \log _{\frac{1}{2}\left(2^{-3}\right)}^{\frac{1}{2}(-3)}=\frac{-\frac{3}{2}}{2}}{}$ $\log _{10}(x+2)=\frac{1}{2}$ what is the base? 10

$$
\begin{array}{ll}
\substack{\text { otc. } \\
\text { exp. } \\
\text { form }} & 10^{\frac{1}{2}}=x+2 \\
& \sqrt{10}=x+2 \\
& \sqrt{10}-2=x \longleftarrow \text { cal ready form }
\end{array}
$$

