Product Property $\log _{b}(m n)=\log _{b} m+\log _{b} n$
Quotient Property $\log _{b} \frac{\boldsymbol{m}}{\boldsymbol{n}}=\log _{b} \boldsymbol{m}-\log _{b} \boldsymbol{n}$
Power Property $\quad \log _{b} \boldsymbol{m}^{\boldsymbol{p}}=\boldsymbol{p} \boldsymbol{\operatorname { l o g }}_{b} \boldsymbol{m}$

1. $\log _{7}(3 x)=\log _{7} 3+\log _{7} x$
2. $\log _{3} \frac{w}{y}=-\log _{5} w-\log _{5} y$
3. $\log _{3} x^{5}=5 \log _{3} x$

Write as a sum/difference of logs
4. $\log _{2} \frac{\boldsymbol{a}^{7}}{\boldsymbol{c}}=\log _{2} a^{7}-\log _{2} c$

$$
=7 \log _{2} a-\log _{2} c
$$

5. $\log _{w} x y^{3}=\log _{w} x+\log _{w} y^{3}$

$$
=\log _{w} x+3 \log _{w} y
$$

6. $\log _{5} \frac{a^{7}}{x y^{4}}=\log _{5} a^{7}-\log _{5} x \cdot y^{4}$

$$
\begin{aligned}
& * * \text { Careful! } * * \\
&=7 \log _{5} a-\left(\log _{5} x+\log _{5} y^{4}\right)
\end{aligned}
$$

$$
\begin{equation*}
=7 \log _{5} a-\log _{5} x-4 \log _{5} y \tag{5}
\end{equation*}
$$

Write as a single logarithm.
6. $2 \log _{s} w-4 \log _{s} c$

$$
\begin{aligned}
& =\log _{5} w^{2}-\log _{5} c^{4} \\
& =\log _{5}\left(\frac{w^{2}}{c^{4}}\right)
\end{aligned}
$$

7. $\log _{x} c+3 \log _{x} w$

$$
\begin{aligned}
& =\log _{x} c \oplus \log _{x} w^{3} \\
& =\log _{x} c w^{3}
\end{aligned}
$$

More practice....
Write as a single logarithm.

1. (4) $\log _{3} w-\log _{3} x+\log _{3} k$

$=\log _{3} w^{4}-\log _{3} x+\log _{3} k$

2. $\log _{5} w+2$

$$
\begin{array}{ll}
\text { ned to replace } \\
\text { with } \log _{s} \frac{x}{T} \\
2=\log _{5} x \text { figure } 4.3-\log _{2} x-2 \log _{2} y & 3=\log _{2} z \\
5^{2}=x \text { this } \\
25=x & 2^{3}=z \\
\text { this Make this } & 8=z
\end{array}
$$

Make this "speak log"
$=\log _{5} \omega \pm \log _{5} 25$

$$
=\log _{5}(25 w)
$$

$$
\text { 2. } \begin{aligned}
& 4 \log _{3} w-\log _{3} x-\log _{3} k \\
= & \log _{3} w^{4}-\log _{3} x-\log _{3} k \\
= & \log _{3} \frac{w^{4}}{x}-\log _{3} k \\
= & \log _{3} \frac{w^{4}}{x k}
\end{aligned}
$$

"speak log"

$$
=\log _{2} 8-\log _{2} x-2 \log _{2} y
$$

$=\log _{2} \frac{8}{x}-\log _{2} y^{2}$

$$
=\log _{2}\left(\frac{8}{x y^{2}}\right)
$$

