Notes for fractional exponents
If m and n are integers and $\boldsymbol{n} \neq 0$, then
Simplify $a^{\frac{\bar{a}}{\bar{a}}}=\left(a^{\frac{1}{2}}\right)^{m}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$

$$
\begin{aligned}
& \left.(\sqrt[3]{64})^{6} 4^{\frac{\mathbf{L}^{\frac{2}{3}}}{}}\right)^{2.64^{\frac{3}{2}}}(\sqrt{64})^{3} \quad(\sqrt[3]{216})^{\frac{1}{3}}=\sqrt[3]{216} \\
& \begin{array}{ll}
(4)^{2} & (8)^{3} \\
=16 & =512
\end{array} \\
& \text { 4. } \begin{aligned}
\text { a) }-64^{\frac{2}{3}} & \begin{array}{l}
(\sqrt[3]{64})^{2 b)}(-64)^{\frac{2}{3}}
\end{array}=(\sqrt[3]{-64})^{2} \\
-(4)^{2}=-16 & =(-4)^{2}=16
\end{aligned} \\
& \begin{aligned}
& 5.4^{\frac{25}{5}} \\
&=4^{\frac{5.36^{-\frac{1}{2}}}{2}}=\frac{1}{36^{1 / 2}}=\frac{1}{81^{\frac{3}{4}}} \\
&=(\sqrt{4})^{5 / 4} \\
&==\frac{1}{\sqrt{36}}=\frac{1}{(\sqrt[4]{81})^{3}}=\frac{1}{3^{3}}=\frac{1}{27} \\
&= 32
\end{aligned}
\end{aligned}
$$

Simplify

8. $7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}}$

$$
\begin{aligned}
& =7^{\frac{1}{2}+\frac{1}{2}} \\
& =7^{1} \\
& =7
\end{aligned}
$$

need same
base
9. $\begin{aligned} & 2^{\frac{1}{2}} \cdot 32^{\frac{1}{2}} \\ & 2^{\frac{1}{2}} \cdot\left(2^{5}\right)^{1 / 2}=2^{\frac{1}{2}} 2^{\frac{5}{2}}\end{aligned}$

> 10. $\left(\frac{x^{-\frac{2}{9}}}{y^{15}}\right)^{18} 11$
> $=\frac{X^{-\frac{2}{3} \cdot \frac{5}{1}}}{y^{-\frac{1}{8}} \cdot \frac{155}{1}}$
11. $\begin{aligned} & y^{\frac{1}{2}} \cdot y^{\frac{3}{10}} \\ = & y^{\frac{1}{2}+\frac{3}{10}}\end{aligned}$
$=\frac{x^{-10}}{y^{-5}}=\frac{y^{5}}{x^{10}} \quad \begin{array}{ll}y^{1 / 5} \\ \text { or } \\ \sqrt[5]{y^{4}}\end{array}$

$\frac{\frac{1 r}{1}}{\sqrt[4]{x} \sqrt[6]{y^{5}}}$

Write in exponential form
13. $\sqrt{5 x y^{3}}$

14. $\sqrt[6]{10 x^{2} y^{3}}$

$$
=10^{1 / 2}\left(x^{2}\right)^{1 / 6}\left(y^{3}\right)^{\frac{1}{2}}
$$

$$
10^{10^{\frac{1}{6}} x^{\frac{2}{2}} y^{\frac{1}{2}} y^{\frac{1}{2}}}{ }^{\text {simplify! }}
$$

NEW LESSON PART 1 ---SOLVING RADICAL EQUATIONS

Solve. Check for extraneous solutions.

Ex. $1 \begin{array}{ll}3+\sqrt{2 x-3} & =8 \\ -3 & -3\end{array}$
Isolate the radical (get

Always check in the original problem Check:

$$
\begin{aligned}
& 3+\sqrt{2 x-3}=8 \\
& 3+\sqrt{2(44)-3}=\frac{?}{=} 8 \\
& 3+\sqrt{28-3}=8 \\
& 3+\sqrt{25}=8 \\
& 3+5=8 \\
& 8=8 \sqrt{3}
\end{aligned}
$$

Ex. $2 \begin{aligned} & 17-4 \sqrt[3]{x-1}=5 \quad \text { Isolate radic al } \\ &-17\end{aligned}$

$$
\frac{-4 \sqrt[3]{x-1}}{-4}=\frac{-12}{-4}
$$

$$
(\sqrt[3]{x-1})^{3}=(3)^{3}
$$

$$
\begin{array}{r}
x-1 \\
+1 \\
+1
\end{array}
$$

$$
x=28
$$

$$
\begin{gathered}
\text { Check: } \\
17-4 \sqrt[3]{x-1}=5 \\
17-4 \sqrt[3]{28-1}=5 \\
17-4 \sqrt[3]{27}=5 \\
17-4(3)=5 \\
17-12=5 \\
5=5
\end{gathered}
$$

