Re-teach Composition of functions

$$f\circ g=f(g(x))$$

- 1. Evaluate g(x) first.
- 2. Then use g(x) as the input for f

Examples

1.
$$g(x) = x^2$$
 and $f(x) = x-5$

a.
$$(f \circ g)(-3)$$
 b. $(g \circ f)(-2)$ c. $(g \circ f)(a)$
= $f(g(-3))$ = $g(f(-2))$ $g(f(a))$
= $f(-3)^2$ = $g(-2-5)$ = $g(a-5)$
= $g(-7)$ =

2.
$$f(x) = 3x^2 - 11x - 4$$
 and $g(x) = 3x+1$

a.
$$(f \circ g)(-2)$$

= $f(g(-2))$
= $f(3(-2)+1)$
= $f(-5)$
= $3(-5)^2-11(-5)-4$
= $3(25)+55-4$
= $75+55-4$
= 126

3. $f(x) = 3x^2 - 11x - 4$ and g(x) = 3x+1

b.
$$(f \circ g)(x) = f(g(x))$$

= $f(3x+1)$
= $3(3x+1)^2 - ||(3x+1)^2 - 4|$
= $3(9x^2+6x+1) - 33x-11-4$
= $27x^2+18x+3-33x-15$
= $27x^2-15x-12$

Skill 7: Composition of Functions for example: what we just did!

Skill 8: Simplifying Complex Expressions for example: multiplying/dividing complex numbers

