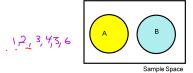
11.3 Mutually Exclusive

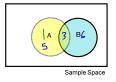

Definitions:

a) inclusive events- events that CAN occur at the same time

Probability of A or B - If A and B are **MUTUALLY EXCLUSIVE** events then P(A or B) = P(A) + P(B) - If A and B are **INCLUSIVE** events then P(A or B) = P(A) + P(B)- P(A and B)

Remember that P(A and B) Means the intersection of A & B

Mutually Exclusive



Example 1: Find the probability of rolling an odd number or a 2 on a die. P(odd or 2) = P(odd) + P(2) =

or 2) = P(odd)+P(2) =

$$\frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{3}{3}$$

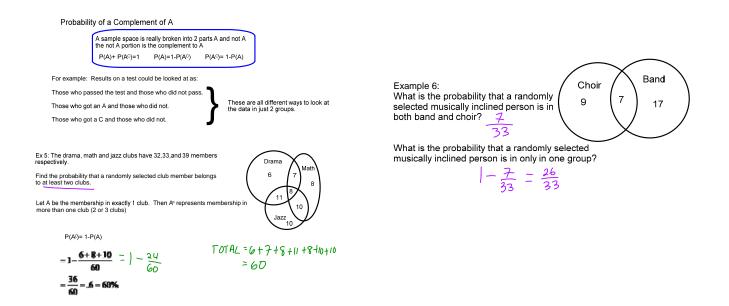
nclusive	

Example 2: Find the probability of rolling an odd number or a multiple of 3 on a die.

P(odd or Mult of 3)= P(odd)+P(mult 3)-P(odd and Mult 3) = $\frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$

Examples	from	the	old	hook	on	nage	654

	Men	Women	Total
Favor	18	9	27
Oppose	12	25	37
No Opinion	20	16	36
Total	50	50	100


Example 3: Find the probability that a randomly selected respondent to the survey opposes or has no opinion about the change in policy. ¿ Are these events mutually exclusive or inclusive?

P(oppose or no opinion)= P(oppose)+P(no opinion) $\frac{37}{100} + \frac{36}{100} = \frac{73}{100}$

Example 4: Find the probability that a randomly selected respondent to the survey is a man or opposes the change in policy. ¿ Are these events mutually exclusive o inclusive)

P(man or oppose)= P(man)+P(opposes)- P(man and opposes)

50	+37	$-\frac{12}{100} =$	87-12	- 75	-3
טסו	100	100	100	100	4

