Notes Chapter 11.1

Combinations: an arrangement of object in which order is $\mathbf{N O T}$ important.
For example: in choosing a clean up committee of 5 students from this class, the order you are chosen is not important, what matters is that you were chosen to clean up.
$B \in Y P$
Ex. 1: You have a blue, green, yellow, purple and red cell phone. How many ways can you select 2 phones to take to class? Write out your possibilities.

$B G$	$G Y$	$Y P$	$P R$	10 ways
$B Y$	$G P$	$Y R$		
$B P$	$G R$			

Is taking a red and a yellow cell phone to class the same as taking a yellow and a red cell phone to class? Yes

Ex. 2 Find the number of ways to buy 4 fruits out of a selection of 9 different fruits.

$$
{ }_{9} C_{4}=\frac{9!}{(9-4)!4!}=\frac{9!}{5!4!}=126
$$

Ex. 3: Find the number of ways to rent 6 dramas from a collection of 19 dramas at the video store.

$$
\begin{aligned}
& \text { number of ways torrent } 6 \text { dramas from a collection of } 19 \text { dramas at the video store. } \\
& \text { or der doesnt matter (watchin g-order matters) } \\
& 19 C_{6}=\frac{19!}{13!6!}=27,132
\end{aligned}
$$

So how do you know when you should use permutations or combinations? The question you should ask yourself every
time is "Does the order of how I choose them matter?" If order matters, use permutations. If not, use combinations.

Ex. 4: How many ways are there to choose a committee of 4 people from 7 people is each person must hold an office (president, vice president, secretary, and treasurer)?
ORDER matters!

$$
7 P_{4}=\frac{7!}{3!}=840 \text { ways }
$$

Ex. 5: How many ways are there to choose a committee of 4 people from a group of 7 people?
ORDER DOES NOT MATTER!

$$
{ }_{7} c_{4}=\frac{7!}{3!4!}=35 \text { ways }
$$

Ex. 7: In a recent survey of 40 students, 27 favor having an outside dance, and 13 oppose it. Find the PROBABILITY that in a random sample of 24 of these students, exactly 15 favor the dance and 9 oppose it.

$$
\frac{{ }_{27}{ }^{C_{15}} \cdot{ }_{13} C_{9} \longleftarrow \text { 我 ways of getting outcome }}{{ }_{40} C_{24}}
$$

Round

$$
\begin{aligned}
& \text { to nearest } \\
& \text { tenth of percent }
\end{aligned}
$$

$$
=.19775 \ldots
$$

$$
\approx 19.8 \%
$$

