Definition of PERMUTATION: an arrangement of objects IN A SPECIFIC ORDER
For example, listening to jazz, classical, then rock music would be DIFFERENT than listening to classical, rock and then jazz music.

$$
\text { Permutations of } n \text { objects } n!\quad n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1
$$

Ex. 1: In a family of 5 children, each child must have a bite of food before a child gets a second bite. How many different orders can the parent feed the child?

$$
\frac{c h i r}{5} \cdot \frac{2}{4} \cdot-\frac{5}{2}=1
$$

Ex. 2: On a baseball team, 9 players are designated as the starting lineup. Before the game, the manager announces the order in which the 9 players will bat. How many different orders are possible?

$$
\begin{aligned}
& 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
&= 9! \\
&= 362,880
\end{aligned}
$$

Permutations of n objects taken r at a time:

$$
P(n, r)={ }_{0} P_{r}=\frac{n!}{(n-r) \mid} \text { where } n>r
$$

EX. 3: Find the number of ways to listen to 4 CDs from a selection of 7 CDs

$$
\begin{aligned}
& \text { Ex. 4: Find the number of ways (permutations) of } 9 \text { objects taken } 6 \text { at a time. }
\end{aligned}
$$

Ex. 5a : Calculate ${ }_{6} \boldsymbol{P}_{\mathbf{2}}$

Ex. 6 Make up a word problem for \#5a

Ex. 7 Find the number of ways to watch 4 videos from a selection of 12 videos.

Permutations with identical objects:

The number of DISTINCT permutations of n objects with r identical objects is

$$
\text { given by: } \frac{n!}{r!}
$$

The number of distinct permutations of n objects with $\boldsymbol{r}_{\mathbf{1}}$ identical objects, $\boldsymbol{r}_{\mathbf{2}}$ identical objects of another kind, $\boldsymbol{r}_{\mathbf{3}}$ identical objects of another kind..... and $\boldsymbol{r}_{\boldsymbol{k}}$ identical objects of another kind is given by:

$$
\frac{n!}{r_{1}!r_{2}!r_{3}!\ldots r_{k}!}
$$

Ex. 6 Ms Wilson wants to arrange the letters N and two $\mathrm{A} s$ in as many different ways as she can. Please write down her options.

3 letters

$$
\frac{3!}{2!}=\frac{3 \cdot 2 \cdot x}{2 \cdot 1}=3
$$

Ex. 7 Find the number of permutations of the letters in each word:

CIRCULAR PERMUTATION -----> $(n-1)!$

Ex. 8 In how many ways can you arrange 4 different candies on a circular tray?

$$
(4)!=3!=3.21=6
$$

Ex. 9: Eight principals are sitting around a circular table. In how many ways can they be arranged?

