FUNDAMENTAL COUNTING PRINCIPLE:

If there are \boldsymbol{m} ways that one event can occur and \boldsymbol{n} ways that another event can occur then there are $(\boldsymbol{m})(\boldsymbol{n})$ ways that both events can occur.

Example 1: Make a tree diagram showing the number of different ways a person could wear a pair of pants and shirt if you are choosing from Yellow or Blue pants and a Green, White or Black shirt.

Example 2: use the FUNDAMENTAL COUNTING PRINCIPLE to verify your answer.

$$
\begin{gathered}
\text { \#ways pants \# whirs } \\
2 \cdot 3=6
\end{gathered}
$$

Example 3:

A password consists of 2 letters followed by 3 digits.
a) How many possible passwords can be chosen?

$$
\begin{aligned}
& \text { letter letter } \times \frac{\text { digit }}{\text { digit }} \overline{\text { digit }} \\
& 26 \cdot 26: 10 \cdot 10 \cdot 10=676,000
\end{aligned}
$$

b) How many would there be if you could not repeat letters or digits?

$$
\begin{aligned}
& \text { letter } \overline{\text { letter }} \text { digit digit digiT } \\
& 26.2510 \cdot 9 \cdot 8=468,000
\end{aligned}
$$

c) How many would there be if you could not use vowels and could not use the number 0 ?

$$
\begin{aligned}
& \text { a,e,i,o,u vowels } \\
& 26-5=21 \\
& \text { letter } \overline{\text { tetter }} \overline{\text { digit }} \overline{\text { digit }} \overline{\text { digit }} \\
& 21 \cdot 21 \cdot 9 \cdot 9 \cdot 9=321,489
\end{aligned}
$$

Example 4:

How many seven digit phone numbers can be formed if the first digit is a 6 , the second digit is a 2 or 6 or 7 and the third digit cannot be a 0 .

$$
\begin{aligned}
& \frac{6}{1} \frac{20-7}{3 \cdot 9} \cdot \frac{1-9}{10} \cdot \frac{0-9}{10} \cdot \frac{0-9}{10} \cdot \frac{0-1}{10} \\
& 270,000
\end{aligned}
$$

Information about a deck of cards:

52 cards in a deck

13 cards is each suit: $2,3,4,5,6,7,8,9,10, J, Q, K, A$
face cards

