11.2 Probability

Theoretical Probability:

If all outcomes in a sample space are equally likely, then the theoretical probability of event A, denoted by $P(A)$, is defined by :
$P(A)=\frac{\text { number of outcomes in event } A}{\text { number of outcomes in the sample space }} \quad \frac{\text { winning outcomes }}{\text { total possible outcomes }}$

Example 1: Find the probability of choosing a BLUE marble from a bowl containing 4 GREEN, 7 BLUE and 6 WHITE marbles.

Example 2: A bag contains 12 yellow blocks, 13 blue blocks, 7 green blocks, and 10 red blocks. You pick one block from the bag at random. Find each theoretical probability.
a) P (yellow)

b) P (not blue)

c) P (red or not green)

Example 3: Suppose that a dart lands at random on the dartboard shown below. Find each theoretical probability.

Width of each ring $=r$
$A(b l u e)=A_{\text {whole }}$

- medium cir de
+ smallest blue circle
$=\pi(3 r)^{2}-\pi(2 r)^{2}+\pi r^{2}$
$=\pi 9 r^{2}-\pi 4 r^{2}+\pi r^{2}=6 \pi r^{2}$
a) $P($ dart landing in blue region $)=\frac{\text { Area of BL ie }}{\text { area of target }}=\frac{6 \pi r^{2}}{\pi(3 r)^{2}}$
b) $\begin{aligned} P\left(\text { dart landing in center circle) } \frac{A(1 i+11 e)}{A \text { whole thing }}\right. & =\frac{1 \pi r^{2}}{9 \pi r^{2}} \\ & =\frac{1}{9}\end{aligned}$

Example 4

Mark goes to the fridge once during the time interval from 3:30-4:00. Find the probability that he will go to the fridge during each time interval.
a) from $3: 30-3: 40$

b) from 3:45-3:50

c) from 3:58-4:00

