5.7 PASCAL'S TRIANGLE. Notes

Look for a pattern to add 4 more rows.

1. Remember that $\binom{n}{n}={ }_{n} C_{r}$. Find each of the following.

2. Find each of the following:
$\left.\binom{3}{0} \quad \begin{array}{l}\binom{3}{1} \\ 1\end{array} \quad \begin{array}{l}3 \\ 2\end{array}\right) \quad\binom{3}{3} \quad$ Which row has these numbers?

Binomial Theorem
Multiply and simplify the following.

$$
\begin{aligned}
& \text { 1. }(x+y)^{0}=1 \\
& \text { 2. }(x+y)^{1}=x+y \\
& \text { 3. }(x+y)^{2}=x^{2}+2 x y+y^{2} \\
& \text { 4. }(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& \text { 5. }(x+y)^{4}=x^{4}+4 x^{3} y^{1}+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& \text { (6. }(x+y)^{5}=x^{5}+5 x^{4} y^{1}+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5} \\
& \text { (7. }(x+y)^{6}=x^{6}+6 x^{5} y^{\prime}+15 x^{4} y^{2}+20 x^{2} y^{9}+15 x^{2} y^{4}+6 x y^{5}+y^{6}
\end{aligned}
$$

Analyze carefully. When expanding $(\boldsymbol{x}+\boldsymbol{y})^{\text {c }}$:

1) The powers of x decrease from n to 0
2) The powers of y increase from O to n
3) A giventerm the powers of x and
4) $n+1$ powers vo y add up to n
5) pascals like

There is also a pattern in the coefficients. So, there must be an easier way to raise a binomial to a power. Write the coefficients of the polynomials in 1 through 7 below:

What does this look like? Pascal's Triangle!

So if you want the coefficient of the $12^{\text {th }}$ term of $(\boldsymbol{x}+\boldsymbol{y})^{\text {15 }}$ you would

$$
\left|S^{C} /\right|\binom{15}{11}=\frac{15!}{11!4!}
$$

$$
\begin{aligned}
& \text { Binomial Theorem } \\
& (x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
&(x+y)^{10} \\
& \mid x^{10} y^{1}+10 x^{9} y^{1}+45 x^{8} y^{2}+120 x^{7} y^{3}+210 x^{6} y^{4} \\
&+252 x^{5} y^{5}+210 x^{4} y^{6}+120 x^{3} y^{7}+45 x^{2} y^{8} \\
&+10 x^{1} y^{9}+1 x^{8} y^{10}
\end{aligned}
\end{aligned}
$$

11

Examples. Expand each of the following.
5th Row $151010 \quad 51$

$$
\begin{aligned}
& \text { 2) } \begin{array}{r}
(x-y)^{5} \\
x^{5}+5 x^{4}(-y)^{1}+10 x^{3}(-y)^{2}+10 x^{2}(-y)^{3}+5 x^{\prime}(-y)^{4} \\
+1 x^{0}(-y)^{5}
\end{array} \\
& =x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}
\end{aligned}
$$

3) $(2 x-3 y)^{4}$

$$
\begin{aligned}
& \left.\begin{array}{l}
1(2 x)^{4}+4(2 x)^{3}(-3 y)^{1}+6(2 x)^{2}(-3 y)^{2} \\
\\
+4(2 x)^{\prime}(-3 y)^{3}+1(2 x)^{0}(-3 y)^{4} \\
=16 x^{4}- \\
-96 x^{3} y+216 x^{2} y^{2} \\
-
\end{array}\right) 216 x y^{3}+81 y^{4}
\end{aligned}
$$

4) Find the $7^{\text {th }}$ term of $(x-y)^{6}$

$$
\begin{array}{r}
(6) \times(-y)^{6} \\
1(1) y^{6} \\
=y^{6}
\end{array}
$$

5) Find the $6^{\text {th }}$ term of $(x+4)^{9}$

$$
\begin{aligned}
& \binom{9}{5}\left(x^{-.5}\right)(4)^{5} \\
& 126 x^{4}(1024) \\
& =129024 x^{4}
\end{aligned}
$$

