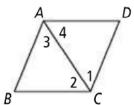
23. Prove Theorem 6-17.

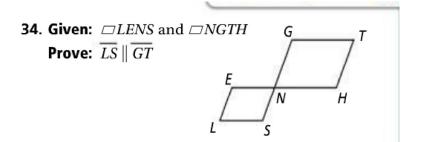
Proof Given: *ABCD* is a parallelogram.

 \overline{AC} bisects $\angle BAD$ and $\angle BCD$.

Prove: *ABCD* is a rhombus.



Statements	Reasons
1. $\frac{ABCD}{AC}$ is a parallelogram. $\frac{ABCD}{AC}$ bisects $\angle BAD$ and $\angle BCD$.	1. Given
2. ∠1≅∠2, ∠3≅∠4	2. Definition of angle bisector.
3. $\overline{AC} \cong \overline{AC}$	3. Reflexive property
4. ∆ABC≅∆ADC	4. ASA Post.
5. $\overline{AB} \cong \overline{AD}$, $BC \cong \overline{DC}$	5. CPCTC
6. $\overline{AB} \cong \overline{CD}$, $BC \cong \overline{AD}$	6. Opp. sides of a \square are \cong
7. $\overline{AB} \cong \overline{AD} \cong \overline{BC} \cong \overline{CD}$	7. Transitive prop. of \cong
8. ABCD is a rhombus	8. Definition of a rhombus

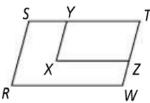


Statements	Reasons
 □LENS and □NGTH □LENS and □NGTH □LENS and □NGTH 	1. Given 2. Definition of a parallelogram
3. $\overline{LS} \parallel \overline{GT}$	3. If two lines are to the same line, then they are to each other.

Use the diagram at the right for each proof.

Proof 36. Given: $\square RSTW$ and $\square XYTZ$

Prove: $\angle R \cong \angle X$



Statements	R W Reasons
1 1101 // 4114 _ 11112	1. Given
2. $\angle R \cong \angle T$ and $\angle T \cong \angle X$ 3. $\angle R \cong \angle X$	2. Opp. $\angle s$ of a \square are \cong
3. ∠R≅∠X	3. Transitive prop. of \cong