### 9.6A Notes

The column on the left shows the steps used to graph a dilation. Use the column on the left to answer each question in the column on the right.


| Problem Graphing a Dilation <br> What are the images of the vertices of $\triangle A B C$ for a dilation centered at the origin with a scale factor of $n=2$ ? Graph the image of $\triangle A B C$. |  |  | 1. Read the example. What do you need to find to solve the problem? <br> the coordinates of the vertices for the dilation |
| :---: | :---: | :---: | :---: |
| Identify the coordinates of each vertex of $\triangle A B C$.$A(0,3), B(-2,0), C(2,-2)$ |  |  | 2. The dilation center is the origin. What are the coordinates of the origin? $\qquad$ <br> - $(0,0)$ $\qquad$ |
| Use the dilation rule where $n$ is the scale factor.$\begin{aligned} & D n(x, y)=(n x, n y) \\ & D_{2}(x, y)=(2 x, 2 y) \end{aligned}$ |  |  | 3. What is a dilation rule for a transformation? <br> a rule that describes how to map a preimage onto its image |
| Find the images of $A, B$, and $C$.$\begin{aligned} & D_{2}(A)=(2 \cdot 0,2 \cdot 3), \text { or } A^{\prime}(0,6) \\ & D_{2}(B)=(2 \cdot(-2), 2 \cdot 0), \text { or } B^{\prime}(-4,0) \\ & D_{2}(A)=(2 \cdot 2,2 \cdot(-2)), \text { or } C^{\prime}(4,-4) \end{aligned}$ |  |  | 4. How was the rule used to find the images of each vertex? <br> The coordinates of the vertex were substituted into the rule to find the coordinates of the image. |
| Graph $A^{\prime}, B^{\prime}$, and $C^{\prime}$. Then draw $\Delta A^{\prime} B^{\prime} C^{\prime}$. |  |  | 5. What does it mean to graph a point? to plot the point on a coordinate grid <br> 6. Use the grid to the left to graph $A^{\prime}, B^{\prime}$, and $C^{\prime}$ and draw $A^{\prime} B^{\prime} C^{\prime}$. |

### 9.6B Notes

## note

## Key Concept Dilation

A dilation with center of dilation $C$ and scale factor $n, n>0$, can be written as $D_{(n, C)}$. A dilation is a transformation with the following properties:

- The image of $C$ is itself (that is, $C^{t}=C$ ).
- For any other point $R, R^{\prime}$ is on $\overrightarrow{C R}$ and $C R^{\prime}=n \cdot C R$, or $n=\frac{C R^{\prime}}{C R^{\prime}}$.
- Dilations preserve angle measure.


5. Circle the equation that is true for the dilation shown to the right.

$$
n=\frac{C X}{C X^{\prime}} \quad n=\frac{C X^{\prime}}{C X} \quad n=\frac{C Y}{C Y^{\prime}} \quad n=\frac{C Y^{\prime}}{C X}
$$



## Problem 1 Finding a Scale Factor

Gof If? Is $D(n, O)(J K L M)=J^{\prime} K^{\prime} L^{\prime} M^{\prime}$ an enlargement or a reduction?
What is the scale factor of the dilation?
Underline the correct choice to complete the sentence.
6. The image $J^{\prime} K^{\prime} L^{\prime} M^{\prime}$ is larger / smaller than the preimage $J K L M$.
7. The image $J^{\prime} K^{\prime} L^{\prime} M^{\prime}$ is a(n) enlargement / reduction .
8. Fill in the blanks to identify the coordinates of the preimage $J K L M$.

$$
J(\quad), K(\quad), L(\quad), M(\quad)
$$


9. Fill in the blanks to identify the coordinates of the image $J^{\prime} K^{\prime} L^{\prime} M^{\prime}$.
$J^{\prime}(\quad), K^{\prime}(\quad), L^{\prime}(\quad, \quad), M^{\prime}(\quad)$,
10. Fill in the blanks to complete the sentence.

## The scale factor of the dilation is <br> $$
n=\frac{K^{\prime} L^{\prime}}{K L}=
$$

