Date

5.6 Notes Log

Observation:

If you are solving an exponential equation, your domain

That means your answer(s) can be any real number.

...but...

If you are solving a logarithmic equation,

your domain is $(0, \infty)$. That means

your answer must be a positive number.

Always check for extraneous solutions after you solve a log equation.

Solve the log equations graphically. Be able to sketch the graphs before you use your TI.

a)
$$\log(x-4)=1$$

$$y_1 = \log(x-4)$$

 $y_2 = 1$

b)
$$3 \ln x = 5$$

$$y_1 = 3 \backslash \gamma X$$

$$y_2 = 5$$

Solve the log equations algebraically.

c)
$$3\log x = \log 40 - \log 5$$

$$3\sqrt{x^3} = 3\sqrt{8}$$

e)
$$\log_3(x^2-4)-\log_3 x=1$$

$$|n[x(x+1)] = |n]$$

 $|x^{2} + x = 2$
 $|x^{2} + x - 2| = 0$
 $|(x+2)(x-1)| = 0$

$$x^{2} + x = 2$$

 $x^{2} + x = 2$

d) $\ln x + \ln (x+1) = \ln 2$

$$(x+2)(x-1)=0$$

f)
$$\log_2 x + \log_2 (x-2) = 3$$

Applications: Solve algebraically.

n=(x-4)(x+1)

$$A = P(1 + \frac{\Gamma}{2})$$

How long will it take an investment of \$5000 to double if the interest rate is 6% compounded quarterly?