## Chapter 3 review (3.1, 3.2)

Name\_\_\_\_\_

In Problems 1 - 3:

- (a) Determine the slope and y-intercept of each linear function.
- (b) Find the average rate of change of each function.
- (c) Graph each function. Label the intercepts.
- (d) Determine whether the function is increasing, decreasing, or constant.

1. 
$$F(x) = -4x + 7$$
  
a)  $m = -4$  b=7  
b) Down 4 over 1





2. 
$$h(x) = \frac{4}{5}x - 6$$
2.  $h(x) = \frac{4}{5}x - 6$ 
3.  $(-6)$ 
4.  $(-6)$ 
4.  $(-6)$ 
4.  $(-6)$ 



In Problems 4 and 5, determine whether the function is linear or nonlinear. If the function is linear, find the equation of the line.

| 4.  | <b>X</b> | y = f(x)       |
|-----|----------|----------------|
|     | -1       | $\frac{17}{2}$ |
| - 1 | 0        | 7              |
|     | 1        | $\frac{11}{2}$ |
|     | 2        | 4              |
|     | 3        | 5<br>2         |

| X  | y = f(x) |
|----|----------|
| -1 | 4        |
| 0  | 8        |
| 1  | 11       |
| 2  | 13       |
| 3  | 14       |

nonlinear

In Problems 6-8, graph each quadratic function using transformations (shifting, compressing, stretching, and/or reflecting). Put into vertex form first!

6. 
$$f(x) = x^{2} + 2x - 3$$
  
 $x^{2} + 2x + 1 = 3 + 1$   
 $(x + 1)^{2} = 4$   
 $y = (x + 1)^{2} - 4$ 

$$7. f(x) = -2(x+1)^2$$



8. 
$$f(x) = -2x^{2} + 6x + 2$$

$$-\frac{18}{4} - 2 = -2 \cdot (x^{2} - 3x + \frac{9}{4})$$

$$-\frac{2}{4} = -2(x - \frac{3}{2})^{2} + \frac{26}{4}$$

$$y = -2(x - \frac{3}{2})^{2} + \frac{26}{4}$$

In Problems 9-12, (a) graph each quadratic function by determining whether the graph opens up or down and by finding its vertex, axis of symmetry, y-intercept, and x-intercepts, if any. (b) Determine the domain and the range of the function. (c) Determine where the function is increasing, and where it is decreasing.

9. 
$$f(x) = -\frac{1}{2}x^2 + 2$$



Increasing (-00,0) Decreasing

(0,00)

$$11. f(x) = -4x^{2} + 4x - 1$$

$$-\frac{4}{2(-4)}$$

$$\left(\frac{1}{2}, 0\right)$$



D: (-00,00)

R: (-00,0]

Increasing (-00,2)
Decreasing (2,00)

10. 
$$F(x) = x^2 + 2x - 3$$



Increasing (-1,00)

Decreasing (-00,-1)

12. 
$$F(x) = 2x^2 + 8x + 3$$

(-2, -5)

-8+-164-4(2)(3)

-8± V40

-8x- 19 510

(-4±50)

 $D:(-\infty,\infty)$  Increasing  $(-2,\infty)$   $R:(-5,\infty)$  Decreasing  $(-\infty,-2)$ 

In Problems 13 - 15, determine whether the given quadratic function has a maximum or a minimum value, and then find the value.

13. 
$$f(x) = 2x^2 + 8x + 5$$

$$\frac{-8}{2(2)} \qquad \text{Min}$$

$$(-2, -3)$$

14.  $F(x) = -x^2 - 10x - 3$ 

$$15. f(x) = -3x^{2} + 12x + 4$$

$$- \frac{12}{2(-3)} = -2$$

$$(2, 16)$$

In Problems 16and 17, find the quadratic function for which:

16. Vertex is (3, -2); contains the point (1, 6)

$$y = a(x-3)^2-2$$
  
 $6 = a(1-3)^2-2$   
 $6 = 4a-2$   
 $8 = 4a$ 

$$(y = 2(x-3)^2-7)$$

17. Contains the points (-6, 1), (-4, 5), and (-2, 1)

$$y=a(x+4)^{2}+5$$
  
 $1=a(-2+4)^{2}+5$   
 $1=4a+5$   
 $-4=4a$   
 $a=-1$   
 $y=-(x+4)^{2}+5$ 

- 18. Bill was just offered a sales position for a computer company. His salary would be \$25,000 per year plus 1% of his total annual sales.
- (a) Find a linear function that relates Bill's annual salary, S, to his total annual sales, x.

(b) In 2012, Bill had total annual sales of \$1,300,000. What was Bill's salary?

$$5(1300000) = 25000 + .01(13000000)$$

$$13000$$

$$38,000$$

(c) What would Bill have to sell to earn \$100,000?

$$100000 = 25000 + .01x$$

(d) Determine the sales required of Bill for his salary to exceed \$150,000.

Solve the following radical equations.

19. 
$$\sqrt{x^2 + 8} = 2\sqrt{2x - 1}$$
  
 $x^2 + 8 = 4(2x - 1)$   
 $x^2 + 8 = 8x - 4$   
 $x^2 - 8x + 12 = 0$   
 $(x - 6)(x - 2) = 0$   
 $56, 23$ 

20. 
$$\sqrt{x}-4=\sqrt{9x}$$
  
 $X-9\sqrt{x}+16=9x$   
 $(-9\sqrt{x})^2=(8x-16)^2$   
 $64x=64x^2-256x+256$   
 $0=64x^2-320x+256$   
 $0=64(x^2-5x+4)$   
 $0=64(x-4)(x-1)$