*no calculator

- 1. * Find the area of one petal of the rose curve given by $r = 3cos3\theta$.
- 2. *Find the area of the region common to the two regions bounded by $r = -6\cos\theta$ and $r = 2 2\cos\theta$.
- 3. *Find the length of the arc from $\theta = 0$ to $\theta = 2\pi$ for the cardioid $r = 2 2\cos\theta$.
- 4. *Find the intersections of $r = 1 2\cos\theta$ and r = 1.
- 5. * Find the horizontal and vertical tangent lines of $r = sin\theta$ $0 \le \theta \le \pi$.
- 6. * Find the equation of the tangent line to the curve at the given parametric value. $x = 4\cos\theta$ and $y = 3\sin\theta$ $\theta = \frac{3\pi}{4}$
- 7. Find the arc length $x = t^2$ $y = 4t^3 1$ $t \in [-1,1]$
- 8. *Find all the points (if any) of horizontal and vertical tangency to the curve

 $x = 1 - t \quad y = t^3 - 3t$

- 9. *Find the velocity and acceleration vectors if the position vector $r(t) = < \sin(3t), \cos(5t) >$
- 10.*A particle moves in an elliptical path so that its position at any time $t \ge 0$ is given by r(t) = (4sint)i + (2cost)j
 - a) Find the velocity and acceleration vectors.
 - b) Find the velocity, acceleration and speed at $t = \frac{\pi}{4}$.
- 11.A particle moves in the plane with velocity vector $v(t) = \langle t 3\pi cos\pi t, 2t \pi sin\pi t \rangle$ at t=0, the particle is at the point (1,5)
 - a) *Find the position of the particle at t=4.
 - b) What is the total distance traveled by the particle from t=0 to t=4