Name _____

In Problems 1 - 10, solve each equation algebraically. Express solutions as a decimal rounded to 3 decimal places. Verify your results using a graphing utility.

1.
$$4^{1-2x} = 2$$

2. $4^{x-x^2} = \frac{1}{2}$
3. $\log_{\sqrt{2}} x = -6$
4. $5^{x+2} = 7^{x-2}$
5. $9^{2x} = 27^{3x-4}$
6. $2^{x+1} \cdot 8^{-x} = 4$

$$7. \quad \log(7x - 12) = 2\log x$$

8. $\log_2 x + \log_2 (x+2) = 3$

9.
$$e^{1-2x} = 4$$
 10. $4^{2x} - 14 = 5 \bullet 4^x$

In Problems 11 and 12, use the following result: If x is the atmospheric pressure (measured in millimeters of mercury, then the formula for the altitude h(x) (measured in meters above sea level)

is
$$h(x) = (30T + 8000) \log \left(\frac{P_o}{x}\right)$$

where T is the temperature (in degrees Celsius) and P_o is the atmospheric pressure at sea level, which is approximately 760 millimeters of mercury.

11. At what height is a Piper Cub whose instruments record an outside temperature of 0° C and a barometric pressure of 300 millimeters of mercury?

12. How high is a mountain if instruments place on its peak record a temperature of 5° C and a barometric pressure of 500 millimeters of mercury?

13. A child's grandparents wish to purchase a bond that matures in 18 years to be used for her college education. The bond pays 4% interest compounded semiannually. How much should they pay so that the bond will be worth \$85,000 at maturity?

14. The half-life of radioactive cobalt is 5.27 years. If 100 grams of radioactive cobalt is present now, how much will be present in 20 years? In 40 years?

- 15. Suppose the population of a newly discovered insect grows according to the logistic growth model $P(t) = \frac{50000}{1+25e^{-0.04t}}$ where *P* represents the population and *t* represents the time in years.
- (a) How many insects were originally discovered?
- (b) Determine the maximum population of the insect population.
- (c) Use a graphing utility, graph P = P(t).
- (d) When will the population reach 20,000 insects?

16. The following data represent the value of an IRA invested in a variety of mutual funds.

Year	Account
	Value
0	\$3000
1	\$3165
2	\$3299
3	\$3563
4	\$3926
5	\$4170

- (a) Using a graphing utility, draw a scatter diagram for the data.
- (b) Using a graphing utility, build an exponential model from the data.
- (c) Based on the model, predict the value of the account after 10 years.