

Examples using Geometric Series formula

1. Find S_{10} of series $2+5+12.5+31.25+\ldots$

$$
r=\frac{5}{2}=\frac{12.5}{5}=\frac{31.25}{12.5}
$$

3. Given $a_{1}=5, r=-3$, find S_{10}.

Adv Alg 2 Week 9 Block Day Notes

4. Identify $\mathrm{a}_{1}, \mathrm{r}, \mathrm{a}_{\mathrm{n}}$, and evaluate $\sum_{k=1}^{12} 2^{k}$

First, find term 1,2 and 3 to figure out a pattern

$$
\begin{aligned}
& a_{1}=2^{\prime}=2 \quad a_{2}=2^{2} \\
& a_{1}=2 a_{3}=2^{3}=8 \\
& r_{1}=2 a_{n}
\end{aligned}=2^{n} \quad \begin{aligned}
& s_{n}=\frac{a_{1}\left(1-r^{2}\right)}{1-r} \\
& \\
& s_{12}=2\left(1-2^{12}\right) \\
&=8190
\end{aligned}
$$

5. Evaluate the sum of the finite geometric series.
6. How many terms must be added together for this geometric series to equal 728 ?
$2+6+18+\ldots$ $S_{n}=\frac{a_{1}\left(1-r^{r}\right)}{(1-r)}$
Solve $728=\frac{2\left(1-3^{n}\right)}{(1-3)}$
$728=\frac{2\left(1-3^{n}\right)}{-2}$
$7 \cdot 28=-1\left(1-3^{n}\right)$
$728=-1+3^{n}$
$729=3^{n}$
$3^{6}=3^{n}$
$n=6$
7. Given $2+(-6)+18+(-54)+\ldots$, find S_{9}
$s_{9}=\frac{2\left(1-(-3)^{9}\right)}{(1-(-3))}$
9842
