When the famous mathematician Karl Friederich Gauss(17771855) was 9 years old, his teacher asked the class to find the sum of the natural numbers from 1 to 100 . Historical accounts indicate the teacher was hoping to take a break from his students and expected the students to add the terms one by one. (Remember there were no calculators at this time!)

Gauss had this ingenious solution:

$$
1+2+3+4+\ldots 98+99+100
$$

$101+101+101+101+\ldots 101+101+101$

So, using Gauss's ingenious idea, let's find the following:

$$
\begin{aligned}
& \text { get } \text { ser }^{\text {iris }}\left\{\begin{array}{l}
1) \\
14+11+8+5+8+11+14 \\
16+16+16+16+16
\end{array} \frac{16(5)}{2}=40\right.
\end{aligned}
$$

2) The first 100 terms o $\sqrt{1+3+5+7+\ldots}$ one series
arith. $d=2 \quad a_{n}=a_{1}+d(n-1)$

$$
\begin{aligned}
& \text { we need } \left.a_{100}=1+2(100-1)\right\}(1+3+5+7+\ldots 199
\end{aligned}
$$

$$
\begin{aligned}
& \frac{200(100)}{2}=10,000
\end{aligned}
$$

Could we generalize this and write a formula?
, rithmetic
 series

$$
S_{n}=\frac{\left(a_{1}+a_{n}\right) n}{2}
$$

Examples
Find the sum of each arithmetic series.

1. $3+8+13+18+\ldots+128$

$$
\begin{aligned}
& \frac{1}{\text { we } n e e d \text { to find } n} \\
& a_{n}=a_{1}+d(n-1) \\
& 128=3+5(n-1) \\
& 128=3+5 n-5 \\
& 128=5 n-28 \\
& 2 \cdot \sum_{k=1}^{(25)} \frac{135}{5}=5 n \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}^{\text {series. }}=\frac{\left(a_{1}+a_{n}\right) \cdot n}{2} \\
& S_{26}=\frac{(3+128) 26-1703}{2}
\end{aligned}
$$

3. The first 100 terms of $2+4+6+8+$..
$d=2$ arithmetic $\quad S_{n}=\frac{\left(a_{1}+a_{n}\right) \cdot n}{2}$
need to find $a_{n}=a_{100}$
$a_{n}=a_{1}+d(n-1)$

$$
\begin{aligned}
a_{n} & =a_{1}+d(n-1) \\
a_{100} & =2+2(100-1) \\
& =2+198 \\
& =200
\end{aligned}
$$

Examples continued

Use the values of a_{1} and S_{n} to find the value of a_{n}.
4. $\mathrm{a}_{1}=6$ and $\mathrm{S}_{50}=7,650 ; \mathrm{a}_{50}$

$$
\begin{aligned}
& S_{n}=\frac{\left(a_{1}+a_{n}\right) \cdot n}{2} \\
& 2 \cdot 7650=\frac{\left(6+a_{50}\right) 50}{2} \\
& \frac{15,300}{50}=\frac{\left(6+a_{50}\right) 50}{50}
\end{aligned}
$$

$$
306=-6+950
$$

Find a_{1} for each arithmetic series

$$
\begin{aligned}
& \text { Find }\left\{\begin{array}{l}
\text { 5. } s_{30}=1890 \text { and } d=4 \text {. } \\
a_{30}=a_{1}+d(n-1) \\
a_{30}=a_{1}+4(30-1) \\
a_{30}=a_{1}+116
\end{array}\right. \\
& S_{n}=\frac{\left(a_{1}+a_{n}\right) \cdot n}{2} \\
& \begin{aligned}
s_{30} & =\frac{\left(a_{1}+\hat{a}_{30}\right) 30}{2} \\
1890 & =\frac{\left(a_{1}+\hat{c}_{30}\right) 30}{2}
\end{aligned} \\
& 1890=\frac{\left(a_{1}+a_{1}+116\right) 30}{2} \\
& \frac{1890}{15}\left(\frac{29,+116) \cdot 15}{15}\right. \\
& 126=291+116 \\
& -116 \quad-116 \\
& \frac{10}{2}=\frac{2 a_{1}}{2} \\
& 5=a_{1} \text { so } a_{1}=5
\end{aligned}
$$

