- Rational Root Theorem

$\left\{\begin{array}{l}\text { Let } \mathrm{P} \text { be a polynomial function with integer coefficients in standard form. } \\ \text { If } \frac{p}{\boldsymbol{q}} \text { is a root of } \mathrm{P}(\mathrm{x})=0 \text {, then } \mathrm{p} \text { is a factor of the constant term } \mathrm{P} \\ \text { and } \mathrm{q} \text { is a factor of the leading coefficient of } \mathrm{P} \text {. }\end{array}\right.$

$$
\text { Example } 1 \quad \boldsymbol{x}^{\mathbf{5}}-9 \boldsymbol{x}^{4}+\mathbf{3} x^{2}-\boldsymbol{x}+\mathbf{8}=\mathbf{0} \quad \text { Standard form? }
$$

GCF?Factor?ANYTHING???

COPY this!

$$
\left\{\begin{array}{l}
\text { IF there is a rational root, then it will be in the form of } \frac{\boldsymbol{p}}{\boldsymbol{q}} \\
\text { where } \mathrm{p} \text { is a factor of the constant term and } \mathrm{q} \text { is a factor } \\
\text { of the leading coefficient. }
\end{array}\right.
$$

factors of leading coefficient is on bottom factors of last term are on top.

What are all of the POSSIBLE rational roots?

$$
\frac{ \pm 8, \pm 4, \pm 2, \pm 1}{ \pm 1}= \pm 8, \pm 4, \pm 2, \pm 1
$$

Ex. 2 State all possible rational roots.

Let's use all of our knowledge to find the roots of the following problems.

Ex. $3 \mid x^{3}+2 x^{2}-7 x-12=0$	GCF? Grouping/X-Box? Quad Formula?
$\begin{array}{lllll} 11 & 1 & 2 & -7 & -12 \\ & 1 & 1 & 3 & -4 \end{array}$	NOW WHAT??
	Fimm... $\mathscr{I}_{\text {wisfit there was a way to get hefp with this. }}$ Possible Rational Roots $\pm 12 \pm 6 \pm 4 \pm 3, \pm 2, \pm 1$ emainder needs to be $=0$ for it to be a root $\begin{aligned} & \left(x^{2}-x-4\right)(x+3)=0 \\ & x^{2}-x-4=0 \text { or } x+3=0 \\ & x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-4)}}{2(1)} \\ & x=-\frac{1 \pm \sqrt{1+16}}{2} \\ & x=\frac{1 \pm \sqrt{17}}{2} \quad\left\{-3, \frac{1 \pm \sqrt{17}}{2}\right\} \end{aligned}$

Find all zeros of the polynomial function.

Ex. $4 W(x)=x^{3}-2 x^{2}-3 x+10$

$$
0=x^{3}-2 x^{2}-3 x+10
$$

Possible $\pm 10 \pm 5, \pm 2, \pm 1$

Rational $\left.\frac{\text { graph }}{\frac{\text { in calculator }}{} y=x^{3}-2 x^{2}-3 x+10}\right)$

crosses x-axis at $x=-2$

$x+2=0$ or $x^{2}-4 x+5=0$
$x=-2 \quad x^{2}-4 x+4=-5+4$
$(x-2)^{2}=-1$
$x-2= \pm \sqrt{-1}$
$\{-2,2 \pm i\}$

Ex. $5 J(x)=5 x^{4}-9 x^{3}-2 x^{2}$ How solutions?
$5 x^{4}-9 x^{3}-2 x^{2}=04$
$x^{2}\left(5 x^{2}-9 x-2\right)=0$
$x^{2}(5 x+1)(x-2)=0$
$x^{2}=0$ or $5 x+1=0$ or $x-2=0$
$x=0$

$$
\begin{aligned}
& \frac{5 x}{5}=\frac{-1}{5} \quad x=2 \\
& x=\frac{-1}{5} \\
& x=\left\{0(\text { mut } 2)-\frac{1}{5}, 2\right\}
\end{aligned}
$$

Ex. $6 \quad P(x)=x^{3}-x^{2}+2 x-2$
$O=x^{2}(x-1)+2(x-1)$
$O=(x-1)\left(x^{2}+2\right)$
$x-1=0$ or $x^{2}+2=0$
$x=1 \quad x^{2}=-2$
$x= \pm \sqrt{-2}$
$x=\{1, \pm i \sqrt{2}\}$

$O=x^{3}(x-2)+8(x-2)$
$0=(x-2)\left(x^{3}+8\right)$
$O=(x-2)(x+2)\left(x^{2}-2 x+4\right)$
$x-2=0$ or $x+2=0$
$x=2$ or $x=-2$

$$
\{ \pm 2,1 \pm i \sqrt{3}\}
$$

