Long Division

Remember 4th grade? You learned LONG DIVISION!!! We're using it again :-)
Numerical long division and polynomial long division are similar.

Numerical Long Division Polynomial Long Division

The remainder from each division above is 0 , so 21 is a factor of 672 and $2 x+1$ is a factor of $6 x^{2}+7 x+2$.

Long Division

Ex. $1\left(x^{2}-3 x+2\right) \div(x-1)$

Ex. $2\left(5 x^{3}+x^{2}-x+3\right) \div(x+1)$

$$
x + 1 \longdiv { 5 x ^ { 3 } + x ^ { 2 } - 4 x + 3 }
$$

$$
\text { Surbeat } \frac{-5 x^{3}+5 x^{2}}{-4 x^{2}-x}
$$

$$
5 x^{2}-4 x+3
$$

$$
\begin{aligned}
\text { subrat } & \frac{+\frac{4 x^{2}-x}{4 x^{2}+4 x}}{+3 x+3} \\
\text { sibluat } & \frac{-3 x+3}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Put in standard form } \\
& \text { Ex. } 3 \begin{array}{l}
\left(10 x-5 x^{2}+x^{3}-24\right) \div\left(x^{2}-x+6\right) \\
x-4
\end{array} \\
& x^{2}-x+6 \begin{array}{|c|c|}
\frac{x^{3}-5 x^{2}+10 x-24}{-x^{3}+x^{2}+6 x} \\
\frac{-4 x^{2}+4 x-24}{+4 x^{2}+4 x+24} \\
0
\end{array}
\end{aligned}
$$

Ex. $4 r^{8}\left(x^{2}-6\right) \div(x+4)$ sein $x^{2}+0 x-6$
pipajor

$$
\begin{gathered}
x+4 \begin{array}{|c}
x-4 \\
\frac{x^{2}+0 x-6}{-x^{2}+4 x} \\
\frac{-4 x-6}{14 x+16} \\
10 \text { remininer }
\end{array}
\end{gathered}
$$

