Write a polynomial function in standard form with the given zeros.

$$
\begin{aligned}
& \text { 1. } \begin{array}{l}
x=2,1 \\
x=2 \text { or } x=1 \\
x-2=0 \text { or } x-1=0 \\
(x-2)(x-1)=0 \\
x^{2}-3 x+2=0 \\
y=x^{2}-3 x+2
\end{array},=\text { }
\end{aligned}
$$

2.

$$
\begin{aligned}
& \text { 2. } \begin{array}{l}
x=-1, \frac{3}{2} \\
x=-1 \text { or } x=\frac{3}{2} \\
x+1=0 \quad 2 x=3 \\
2 x-3=0 \\
x+1)(2 x-3)=0 \\
2 x^{2}-x-3=0 \\
y=2 x^{2}-x-3
\end{array}
\end{aligned}
$$

3. $x=-1,2,3$

$$
\begin{aligned}
& x=-1 \text { or } x=2 \text { or } x=3 \\
& x+1=0 \text { or } x-2=0 \text { or } x-3=0 \\
& (x+1)(x-2)(x-3)=0 \\
& \left(x^{2}-x-2\right)(x-3)=0
\end{aligned}
$$

$$
y=x^{3}-4 x^{2}+x+6
$$

4. $x=0,0,3,4$
multiplicity of

$$
y=x^{2}(x-3)(x-4)
$$

$$
y=x^{2}\left(x^{2}-7 x+12\right)
$$

$y=x^{4}-7 x^{3}+12 x^{2}$

How do you factor $\boldsymbol{x}^{\mathbf{4}}-\mathbf{3} \boldsymbol{x}^{\mathbf{2}}+\mathbf{2}$?
$\begin{array}{cc}\text { well... } & \text { factor it } \\ \text { How do you factor } \boldsymbol{x}^{\mathbf{2}} \mathbf{- 3 x} \mathbf{+ 2} ? & (x-2)(x-1)\end{array}$
Do you see a similarity? Do you see that the middle term's exponent is half of the leading terms's exponent?

What if you made a substitution?

$$
\begin{array}{cc}
x^{2}=m & \begin{array}{c}
x^{4}-3 x^{2} \\
\left(x^{2}\right)^{2}-3\left(x^{2}\right)
\end{array} \\
\text { then you get: } & m^{2}-3 m+2
\end{array}
$$

and can you factor that? it is the same as the one above.....except that you made the substitution.....now substitute back and solve.

$$
\begin{aligned}
& (\mathrm{ne}-2)(\mathrm{xa}-1) \\
& \left(\mathrm{x}^{2}-2\right)\left(x^{2}-1\right)
\end{aligned}
$$

but...are we done? do you see the difference of squares?

What is the final answer? $\quad\left(x^{2}-2\right)\left(x^{2}-1\right)=$
$\left(x^{2}-2\right)(x+1)(x-1)$

Try this: \quad Let $m=x^{2}$

1. $x^{4}+7 x^{2}+10 \quad m^{2}+7 m+10$

2. $2 x^{6}-3 x^{3}-20$

$$
\begin{aligned}
& \text { Let } m=x^{3} \\
& \text { so } 2 m^{2}-3 m-20 \\
& (m-4)(2 m+5) \\
& \left(x^{3}-4\right)\left(2 x^{3}+5\right)
\end{aligned}
$$

3. $x^{4}-5 x^{2}-24$ Let $m=x^{2}$

Find the real or imaginary solutions of each equation by factoring Find all solutions.

Ex. $1 \quad 2 \boldsymbol{x}^{3}-7 \boldsymbol{x}^{\mathbf{2}}+\mathbf{3 x}=\mathbf{0}$

$$
\begin{array}{rl}
x\left(2 x^{2}-7 x+3\right)=0 & \text { 1. Factor, factor, factor! } \\
x(2 x-1)(x-3)=0 & \text { 2. Zero product property } \\
x=0 \text { or } 2 x-1=0 \text { or } x-3=0 & \text { 3. Check answer } \\
2 x=1 & 2(0)^{3}-7(0)^{2}+3(0)= \\
0=\frac{1}{2} & 0-0+0=0 \\
x=\left\{0, \frac{1}{2}, 3\right\} & \begin{array}{l}
2\left(\frac{1}{2}\right)^{3}-7\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right) ? 0 \\
2\left(\frac{1}{8}\right)-7\left(\frac{1}{4}\right)+\frac{33}{2}=0
\end{array} \\
& \frac{1}{4}-\frac{7}{4}+\frac{6}{4} \\
0 & 2(3)^{3}-7(3)^{2}+3(3) \div 0 \\
2(27)-7(9)+9=0 \\
54-63+9=0 \\
& -9+9=0 \\
0 & 0=0 V
\end{array}
$$

Ex. $25 x^{3}-12 x^{2}+4 x=0$

$$
\begin{aligned}
& x\left(5 x^{2}-12 x+4\right)=0 \\
& x(5 x-2)(x-2)=0
\end{aligned}
$$

$$
\begin{array}{r}
20 / 10 /-2 \\
-12 \\
-2 \\
-2 x \\
\hline 5 x^{2} \\
\hline-2 x \\
\hline
\end{array}
$$

$$
x=0 \text { or } 5 x-2=0 \text { or } x-2=0
$$

$$
5 x=2 \quad x=2
$$

$$
\begin{aligned}
& x=\alpha \\
& x=\frac{\alpha}{5}
\end{aligned}
$$

$$
x=\left\{0, \frac{2}{5}, 2\right\}
$$

Find the real or imaginary solutions of each equation by factoring.
How many solutions? 4
Ex. $3 x^{4}-8 x^{2}+16=0$
Let $m=x^{2} \quad m^{2}-8 m+16=0$

$x+2=0$ or $x-2=0$
$\begin{array}{cc}x=-2 \text { or } & x=2 \\ \text { multiplicity of } 2 & \text { multiplicity of } 2\end{array} \quad x=\{-2,2\}$
Ex. $4 x^{4}-2 x^{2}-15=0$
Let $m=x^{2} \quad m^{2}-2 m-15=0$

$$
\begin{aligned}
& (m-5)(m+3)=0 \\
& x^{2}=5=0 \text { or } x^{2}+3=0 \\
& x^{2}=5 \quad \begin{array}{l}
x^{2}=-3 \\
x= \pm \sqrt{5} \quad \\
\{ \pm \pm \sqrt{-3} \\
\{ \pm \sqrt{5}, \pm i \sqrt{3}\}^{x}= \pm i \sqrt{3}
\end{array}
\end{aligned}
$$

Find the real or imaginary solutions.

$$
\begin{aligned}
2 x & =1 \\
x & =\frac{1}{2}
\end{aligned} \quad x=\frac{-2 \pm \sqrt{2^{2}-4(4)(1)}}{2(4)} \quad \text { Use Quadratic formula }
$$

$$
x=\frac{-2 \pm \sqrt{4-16}}{8}=\frac{-2 \pm \sqrt{-12} \text { simplify }}{8}
$$

$$
=\frac{-2 \pm \sqrt{-1} \sqrt{4} \sqrt{3}}{8}
$$

$$
\left.x=\left\{\frac{1}{2}\right) \frac{-1 \pm i \sqrt{3}}{4}\right\}
$$

$$
=\frac{-2 \pm 2 i \sqrt{3}}{8}=\frac{1(-1 \pm i \sqrt{3})}{84}
$$

Find the real or imaginary solutions of each equation.
$E x .7 \boldsymbol{x}^{4}-\mathbf{1 6}=\mathbf{0}$ use subst or factor directly. Let $m=x^{2}$

$$
\begin{aligned}
& \text { Ex: } 5 x^{3}-8=0 \\
& (x)^{3}-(2)^{3} \\
& (x-2)\left(x^{2}+2 x+4\right)=0 \\
& x-2=0 \text { or } x^{2}+2 x+4=0 \\
& x=2 \quad x^{2}+2 x+1=-4+1 \\
& x=\{2,-1 \pm i \sqrt{3}\} \\
& (x+1)^{2}=-3 \\
& \begin{array}{l}
x+1= \pm \sqrt{-3} \\
x+1= \pm i \sqrt{3}
\end{array} \\
& x=-1 \pm i \sqrt{3} \\
& \text { Ex. } 6 \mathbf{~ 8 x ~}^{3}=1 \\
& \begin{aligned}
a^{3}-b^{3} & =(a-b)\left(a^{2}+a b+b^{2}\right) \\
& =(2 x-1)\left((2 x)^{2}+(2 x)(1)+(1)^{2}\right)
\end{aligned} \\
& 8 x^{3}-1=0 \\
& (2 x)^{3}-(1)^{3} \\
& (2 x-1)\left(4 x^{2}+2 x+1\right)=0 \\
& 2 x-1=0 \text { or } 4 x^{2}+2 x+1=0
\end{aligned}
$$

