$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

Example:

Factor $27x^3 - 64y^3$

first re-write the problem as the difference of two cubes $(3x)^3 - (4y)^3$ use the difference formula:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

a = 3x b = 4y now substitute the values into the formula

$$(3x)^3 - (4y)^3 = (3x - 4y)((3x)^2 + (3x)(4y) + (4y)^2)$$

Now simplify: $= (3x - 4y)(9x^2 + 12xy + 16y^2)$

Factor each sum or difference of cubes completely. Don't forget to factor out GCF if necessar

1.
$$8x^3 - 27$$

5.
$$x^3 + 64$$

2.
$$2x^3 + 54$$

6.
$$2x^3 - 250y^6$$

3.
$$4x^3 - 32y^9$$

7.
$$27x^3 + 64$$

4.
$$64x^3 - 1$$

8.
$$x^3 - 27c^3y^6$$

Wk 10 block	AA2 Factor sum and Difference of cubes
Name	