Simplifying RAD/CAES!!!!
Ex 1. $\sqrt{32}-\sqrt{24}+8 \sqrt{2}-\sqrt{54}$

$$
\begin{aligned}
& =\sqrt{16 \cdot 2}-\sqrt{4 \cdot 6}+8 \sqrt{2}-\sqrt{9 \cdot 6} \\
& =4 \sqrt{2}-2 \sqrt{6}+8 \sqrt{2}-3 \sqrt{6} \\
& =12 \sqrt{2}-5 \sqrt{6}
\end{aligned}
$$

Ex. $2 \sqrt[3]{16}+\sqrt[3]{24} \quad$ You need to recall your perfect cubes!
$\sqrt[3]{8 \cdot 2} 1,8,27,64,125,216,343,512,729,1000$, etc.
$\sqrt[3]{8 \cdot 2}+\sqrt[3]{8 \cdot 3}$

$$
2 \sqrt[3]{2}+2 \sqrt[3]{3}
$$

Ex. $3 \quad 3 \sqrt[3]{250}-5 \sqrt[3]{54}$

$$
\begin{aligned}
& =3 \cdot \sqrt[3]{125} \cdot \sqrt[3]{2}-5 \sqrt[3]{27} \cdot \sqrt[3]{2} \\
& =3 \cdot 5 \sqrt[3]{2}-5 \cdot 3 \sqrt[3]{2} \\
& =15 \sqrt[3]{2}-15 \sqrt[3]{2} \\
& =\square
\end{aligned}
$$

Ex. $4 \sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2}$

Ex. $5 \sqrt[3]{\frac{3}{4}}=\frac{\sqrt[3]{3}}{\sqrt[3]{4}} \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}=\frac{\sqrt[3]{6}}{\sqrt[3]{8}}=\frac{\sqrt[3]{6}}{2}$
rationalizes
you need cube
Ex. $6 \sqrt[4]{\frac{3}{4}}=\frac{\sqrt[4]{3}}{\sqrt[4]{4}}=\frac{\sqrt[4]{3}}{\sqrt[4]{2^{2}}}=\frac{\sqrt[4]{2^{2}}}{\sqrt[4]{2^{2}}}=\frac{\sqrt[4]{12}}{\sqrt[4]{2^{4}}}=\frac{\sqrt[4]{12}}{2}$
Ex. $7 \sqrt[5]{\frac{3}{4}}=\frac{\sqrt[5]{3}}{\sqrt[5]{2^{2}}} \cdot \frac{\sqrt[5]{2^{3}}}{\sqrt[5]{2^{3}}}=\frac{\sqrt[5]{24}}{\sqrt[5]{2^{5}}}=\frac{\sqrt[5]{24}}{2}$

Ex. $8 \quad(3 \sqrt{2}+5)(\sqrt{6}-3)=6 \sqrt{3}+5 \sqrt{6}-9 \sqrt{2}-15$

$\sqrt{6}$
$3 \sqrt{2}-3$
$3 \sqrt{12}$ $-9 \sqrt{2}$ $3 \sqrt{4} \cdot \frac{3}{3}$ $3 \cdot 2 \sqrt{3}$ $6 \sqrt{3}$ $5 \sqrt{6}$ -15

Ex. $9 \quad(4 \sqrt{3}-2)^{2}$

$$
=52-16 \sqrt{3}
$$

Ex 10. $\frac{\sqrt{3}+2}{\sqrt{3}-1}$

