Group Warm Up-NO CALC

L. The multiplicative inverse of a 3. Solve by factoring. $6x^2 = 19x + 7$ complex number is $\frac{1}{z}$

where $z \neq 0$. Find the multiplicative inverse, or reciprocal, of the complex number. Then use complex conjugates to simplify the multiplicative inverse. 2 + 5i

$$2x^2 + 4 = 10x$$

2. Two complex numbers a+biand c+di are equal when a=cand b=d. Solve this equation for x and y. 2 - i - 2 + i - -14 + 9i

$$2x+3yi=-14+9i$$

5. Solve by quadratic formula. $-2(x+1)^2 = 3$

Teacher note: answers on next slide

Answers to week 12 Block Day Warm-up

1 . 1	
$\frac{1}{2+5i}$ 2 4 -10i 4. $2x^2$ +	4=10 <i>r</i>
+5i +10i -25f 2x ²	$\frac{4}{a} = \frac{10x}{a}$
$\left(\frac{1}{2-3}\right) = \left(\frac{2-33}{2-3}\right) \qquad \qquad$	
$(2+52)$ $(2-52)$ $-4+23-23$ $x^{2}-53$	x = -2
$=\frac{2-37}{29}=\frac{2}{29}=\frac{3}{29}i$ s^2-5	$x + \frac{25}{2} = -2 + \frac{25}{2}$
	4 4
2. $2x + 3yi = -14 + 9i$ 2. $2x - 14$ $3x - 9i$ ($x - \frac{3}{2}$	$\left(\frac{1}{4}\right) = \frac{17}{4}$
$x = -7$ $y = 3$ $x = \frac{5}{2}$	$\pm \frac{\sqrt{17}}{2}$
$6x^2 = 19x + 7$	±√17
3. 6x ² -19x-7=0	z
(2x-7)(3x+1)=0 5. $-2(x+1)$) ⁷ - 3
$-2x-7=0 \text{ or } 3x+1=0$ $-2(x^2+$	2x+1}-3=0
$\frac{7}{x=7}$ $\frac{1}{x=1}$ $-2x^2-4$	r-2-3=0
$-2x^2-4$	x-5=0
$2\pi^2 + 4\lambda$	+5=0
-b±√l	² -4ac
x= <u></u> 2	a
-(4)±√{4	¹) ² -4(2)(5)
=	(2)
<u>-4±√16-4</u>	0_ <u>-4±√-24</u>
4	4
-4+2636	

New Lesson: Solving Systems of Quadratics Using Substitution

