Group Warm Up-NO CALC
I. The multiplicative inverse of a
complex number is $\frac{1}{z}$
where $z \neq 0$. Find the
multiplicative inverse, or
reciprocal, of the complex
number. Then use complex
conjugates to simplify the multiplicative inverse.

$$
2+5 i
$$

2.

Two complex numbers a+bi
and $c+d i$ are equal when $a=c$ and $b=d$. Solve this equation for x and y.

$$
2 x+3 y i=-14+9 i
$$

3. Solve by factoring.

$$
6 x^{2}=19 x+7
$$

4. Solve by completing the square.

$$
2 x^{2}+4=10 x
$$

5. Solve by quadratic formula. $-2(x+1)^{2}=3$

Teacher note: answers on next slide

Answers to week 12 Block Day Warm-up

1. $\frac{1}{2+5 f}$

2. $2 x^{2}+4=10 x$
$\frac{2 x^{2}}{2}+\frac{4}{2}=\frac{10 x}{2}$
$x^{2}+2=5 x$
$x^{2}-5 x=-2$
$x^{2}-5 x+\frac{23}{4}=-2+\frac{25}{4}$
$\left(x-\frac{5}{2}\right)^{2}=\frac{17}{4}$
$x-\frac{3}{2}- \pm \frac{\sqrt{17}}{2}$
$x=\frac{5 \pm \sqrt{17}}{2}$
$6 x^{2}=19 x+7$ $6 x^{2}-19 x-7=0$ $(2 x-7)(3 x+1)=0$ $2 x-7=0 \times 3 x+1=0$ $x=\frac{7}{2} \sigma x=\frac{1}{3}$
3. $-2(x+1)^{2}-3$
$-2\left(x^{2}+2 x+1\right)-3=0$
$-2 x^{2}-4 x-2-3=0$

$x=\frac{-b \pm \sqrt{b^{2}-4 a}}{2 a}$
$=\frac{-(4) \pm \sqrt{(4)^{2}-4(2)(5)}}{2(2)}$ 2(2)
$\frac{-4 \pm \sqrt{16-40}}{4}=\frac{-4 \pm \sqrt{-24}}{4}$
$=\frac{-4 \pm 24 \sqrt{6}}{4}=\frac{-2 \pm \sqrt{6}}{2}$

New Lesson: Solving Systems of Quadratics Using Substitution

Solve using algebra:
Ex. $2 \quad y=-x^{2}+3$
$y=x^{2}$
Use subset

$$
\begin{aligned}
& x^{2}=-x^{2}+3 \\
& +x^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 x^{2}}{2} & =\frac{3}{2} \\
x^{2} & =3
\end{aligned}
$$

$$
x^{2}=\frac{3}{2} \quad \text { How many solutions are we looking for?2 }
$$

$$
x= \pm \sqrt{\frac{3}{2}}=-\frac{\sqrt{3}}{\sqrt{2}} \sqrt{2} \sqrt{2}
$$

$$
\left(\frac{\sqrt{6}}{2}, \frac{3}{2}\right),\left(-\frac{\sqrt{6}}{2}, \frac{3}{2}\right)
$$

$$
x= \pm \sqrt{6}
$$

