AA2 Week 11 Block Day Warm-up

Solve by the $\underline{\mbox{quadratic formula.}}$

$$1. x^{2} + 5x + 6 = 0$$

$$x = \frac{-(5) \pm \sqrt{(5)^{2} - 4(1)(6)}}{2(1)}$$

$$= \frac{-5 \pm \sqrt{25 - 24}}{2} = \frac{-5 \pm \sqrt{1}}{2}$$

$$= \frac{-5 \pm 1}{2} = \frac{-5 \pm \sqrt{1}}{2} = \frac{-4}{2} = -2$$

$$= \frac{-5 \pm 1}{2} = \frac{-6}{2} = -3$$

$$3. x^{2} + 7x - 10 = 0$$

$$x = \frac{-(7) \pm \sqrt{(7)^{2} - 4(1)(-10)}}{2(1)}$$

$$4. x^{2} - 3x + 10 = 0$$

$$= \frac{-7 \pm \sqrt{49 + 40}}{2} = \frac{-7 \pm \sqrt{89}}{2} \qquad \qquad x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(10)}}{2(1)} = \frac{3 \pm \sqrt{9 - 40}}{2} = \frac{3 \pm \sqrt{-31}}{2} = \frac{\text{non-real solution}}{2}$$

Mathematicians invented a new kind of number to deal with situations like #4 on the warm-up. Since the 1500's $\sqrt{-\#}$ called an imaginary number. In late 1700's Leonard Euler introduced i = $\sqrt{-1}$

So we can simplify the following:

$$1.\sqrt{-4} = \sqrt{-1} \cdot \sqrt{4}$$

$$c(2) = 2c$$

$$2.\sqrt{-49} = \sqrt{-1} \cdot \sqrt{49}$$

$$c \cdot 7 = 7c$$

$$3.\sqrt{-8} = \sqrt{-1} \cdot \sqrt{4} \cdot \sqrt{2}$$

$$= c \cdot 2\sqrt{2}$$

$$2c\sqrt{2}$$

And # 4 on the warmup could be completely solved using i.

4.
$$x^{2} - 3x + 10 = 0$$

$$x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(1)(10)}}{2(1)}$$

$$= \frac{3 \pm \sqrt{9 - 40}}{2} = \frac{3 \pm \sqrt{-31}}{2} = \frac{3 \pm i\sqrt{31}}{2}$$

Solve using the quadratic formula. Give exact answers.

$$x^{2} + 4x = -5$$

$$x^{2} + 4x + 5 = 0$$

$$x = -4 \pm \sqrt{4^{2} - 4(1)(5)}$$

$$x = -4 \pm \sqrt{4^{2} - 4(1)(5)}$$

$$x = -4 \pm \sqrt{16 - 20}$$

$$= -4 \pm \sqrt{16 - 20}$$

$$= -4 \pm \sqrt{16 - 20}$$

$$x = -4 \pm \sqrt{16 - 20}$$

$$x = -4 \pm \sqrt{16 - 20}$$

DISCRIMINANT The discriminant is: b^2 - 4*ac*

Advanced Algebra 2 - Discriminant Discovery Worksheet $b^2 - 4ac$ Notice the warmup helps with 1st four

Equation	Value of discriminant	Roots	Description of Roots (Real, Rational, Irrational or Imaginary)	Number of Roots (One double root, two, or two conjugates)
$x^2 + 5x + 6 = 0$	1	-2,-3	real, rational	two
$x^2 - 3x + 10 = 0$	-31	$\frac{3\pm i\sqrt{31}}{2}$	imaginary	two conjugates
$x^2 + 7x - 10 = 0$	89	$\frac{-7\pm\sqrt{89}}{2}$	real, irrational	two
$x^2 + 6x + 9 = 0$	0	-3	real, rational	one double root
$3x^2 + 14x - 5 = 0$	256	1/3, -5	real, rational	two
$x^2 - 14x + 34 =$ -15	0	7	real, rational	one double root
$(x+2)^2 = 5$	20	$-2 \pm \sqrt{5}$	real, irrational	two
$x^2 - 8x = -31$	-60	$4 \pm i\sqrt{15}$	imaginary	two conjugates
$\mathbf{x}^2 + 3\mathbf{x} = -1$	5	$\frac{-3\pm\sqrt{5}}{2}$	real, irrational	two
$(x - 7)^2 = -2$	-8	$7 \pm i\sqrt{2}$	imaginary	two conjugates

How will I know how many REAL solutions exist?

2 REAL solutions? 1 REAL solution? 0 REAL solutions?

2 conjugates

When Given $ax^{2} + bx + c = 0$ (discriminant is a positive number) If $b^{2} - 4ac > 0$, irrational discriminant is not then 2 REAL Solutions, irrational discriminate (discriminant is zero), irrational discriminate (additional discriminate is a perfect square (discriminant is zero), is a perfect square (discriminant is zero), it $b^{2} - 4ac = 0$ then 1 REAL Solution (double root). (discriminant is a negative number) If $b^{2} - 4ac < 0$ then 0 REAL Solutions or imaginary- 2 conjugates