AA2 Week 11 Block Day Warm-up
Solve by the quadratic formula.

$$
\begin{array}{ll}
\text { 1. } x^{2}+5 x+6=0 & \text { 2. } x^{2}+6 x+9=0 \\
x=\frac{(5) \pm \sqrt{(5)^{2}-4(1)(6)}}{2(1)} & x=\frac{-(6) \pm \sqrt{(6)^{2}-4(1)(9)}}{2(1)} \\
=\frac{-5 \pm \sqrt{25-24}}{2}=\frac{-5 \pm \sqrt{1}}{2} & =\frac{-6 \pm \sqrt{36-36}}{2}=\frac{-6 \pm \sqrt{0}}{2} \\
=\frac{-5 \pm 1}{2} \frac{-5+1}{2}=\frac{-4}{2}=-2 & =\frac{-6 \pm 0}{2}=\frac{-6}{2}=-3 \\
& \\
\begin{array}{ll}
\text { 3. } x^{2}+7 x-10=0 & \frac{-6+0}{2}=\frac{-6}{2}=-3 \\
x=\frac{-(7) \pm \sqrt{(7)^{2}-4(1)(-10)}}{2(1)} & \text { 4. } x^{2}-3 x+10=0 \\
=\frac{-7 \pm \sqrt{49+40}}{2}=\frac{-7 \pm \sqrt{89}}{2} & x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(10)}}{2(1)} \\
& =\frac{3 \pm \sqrt{9-40}}{2}=\frac{3 \pm \sqrt{-31}}{2}=\text { non-real solution }
\end{array}
\end{array}
$$

Mathematicians invented a new kind of number to deal with situations like \#4 on the warm-up.
Since the 1500's $\sqrt{-\#}$ called an imaginary number.
In late 1700's Leonard Euler introduced $\mathrm{i}=\sqrt{ }-1$
So we can simplify the following:

$$
\begin{array}{r}
1 . \sqrt{-4}=\sqrt{-1} \cdot \sqrt{4} \\
i(2)=2 i
\end{array}
$$

2. $\sqrt{-49}=\sqrt{-1} \sqrt{49}$

$$
i: 7=7 i
$$

3. $\sqrt{-8}=\sqrt{-1} \cdot \sqrt{4} \cdot \sqrt{2}$

$$
=\frac{i \cdot 2 \sqrt{2}}{2 i \sqrt{2}}
$$

And \#4 on the warmup could be completely solved using i.

$$
\begin{aligned}
& \text { 4. } x^{2}-3 x+10=0 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(10)}}{2(1)} \sqrt{\sqrt{-1} \sqrt{31}} \\
& =\frac{3 \pm \sqrt{9-40}}{2}=\frac{3 \pm \sqrt{31}}{2}=\frac{3 \pm i \sqrt{31}}{2}
\end{aligned}
$$

Solve using the quadratic formula. Give exact answers.

$$
\begin{aligned}
& x^{2}+4 x=-5 \\
& x^{2}+4 x+5= \\
& x
\end{aligned} \begin{aligned}
x & =\frac{-4 \pm \sqrt{4^{2}-4(1)(5)}}{2(1)} \\
& =\frac{-4 \pm \sqrt{16-20}}{2} \\
& =\frac{-4 \pm \sqrt{-4}}{2}=\sqrt{-1} \sqrt{4} \\
& =\frac{-4 \pm 2 i}{2}=+2(-2 \pm i) \\
x & =\sqrt{2}
\end{aligned}
$$

DISCRIMINANT

The discriminant is:

$$
b^{2}-4 a c
$$

Advanced Algebra 2 - Discriminant Discovery Worksheet
scriminant Discovern Worksheet
$b^{2}-4 a c ~ N o t i c e ~ t h e ~ w a r m u p ~ h e l p s ~ w i t h ~ 1 s t ~ f o u r ~$

Equation	Value of discriminant	Roots	Description of Roots Real, Rational, Irrational or Imaginary)	Number of Roots (One double root, two, or two conjugates)
$\mathrm{x}^{2}+5 \mathrm{x}+6=0$	1	$-2,-3$	real, rational	two
$\mathrm{x}^{2}-3 \mathrm{x}+10=0$	-31	$\frac{3 \pm i \sqrt{31}}{2}$	imaginary	two conjugates
$\mathrm{x}^{2}+7 \mathrm{x}-10=0$	89	$\frac{-7 \pm \sqrt{89}}{2}$	real, irrational	two
$\mathrm{x}^{2}+6 \mathrm{x}+9=0$	0	-3	real, rational	one double root
$3 \mathrm{x}^{2}+14 \mathrm{x}-5=0$	256	$1 / 3,-5$	real, rational	two
$\mathrm{x}^{2}-14 \mathrm{x}+34=$	0	7	real, rational	one double root
-15	20	$-2 \pm \sqrt{5}$	real, irrational	two
$(\mathrm{x}+2)^{2}=5$	-60	$4 \pm i \sqrt{15}$	imaginary	two conjugates
$\mathrm{x}^{2}-8 \mathrm{x}=-31$	5	$\frac{-3 \pm \sqrt{5}}{2}$	real, irrational	two
$\mathrm{x}^{2}+3 \mathrm{x}=-1$	-8	$7 \pm i \sqrt{2}$	imaginary	two conjugates
$(\mathrm{x}-7)^{2}=-2$				

How will I know how many REAL solutions exist?

2 REAL solutions? 1 REAL solution? 0 REAL solutions?
2 conjugates

When Given

$$
a x^{2}+b x+c=0
$$

(discriminant is a positive number)
If $b^{2}-4 a c>0$
then 2 REAL Solutions
-irrational discriminant is not
perfect square
-rational-discriminate
(discriminant is zero) is a perfect square
If $b^{2}-4 a c=0$
then 1 REAL Solution (double root).
(discriminant is a negative number)
If $b^{2}-4 a c<0$
then 0 REAL Solutions or imaginary- 2 conjugates

