Adv Alg 2 Week 11 Tuesday Warm-up

Square a binomial
1.
$$(x+3)^3 = (x+3)(x+3) = x^2 + 6x + 9$$

2. $(x-7)^2 = (x-7)(x-7) = x^2 - 14x + 49$
3. $(x+5)^2 = (x+5)(x+5) = x^2 + 10x + 25$
Do you see a pattern or a shortcut?
Do 4-6 using the pattern/shortcut.
4. $(x+4)^2 = x^2 + 6x + 1/6$
5. $(x-10)^2 = x^2 - 20x + 1/00$
6. $(y+2)^2 = y^2 + 4y + 4$
Working backwards...factoring!
7. $x^2 - 12x + 36 = (x-7)^2$ $(x-6)^2$
8. $x^2 + 8x + 16 = (x+4)^2$
9. $x^2 - 30x + 225 = (x-1/5)^2$
What do you add to the expression to make it a perfect square?
 $x^2 + bx + (y+2)^2 = (x+\frac{4}{2})^2$

Solve by completing the square.

1.
$$x^{2} + 8x = 40$$

 $x^{2} + 8x + 46 = 40 + 46$
 $(x+4)^{2} = 56$
 $x+4 = \pm \sqrt{56}$ simplify if possible
 $x+4 = \pm \sqrt{4} + 44$
 $x+4 = \pm 2\sqrt{14}$ solve for x
 $x = -4 \pm 2\sqrt{14}$

Solve by completing the square.

2.
$$x^{2} + 10x \pm 24 = 0$$

 $x^{2} + 10x \pm 25 = 24 \pm 25$
 $(\frac{19}{2})^{2}$
 $(x + 5)^{2} = -49$
 $x + 5 = \pm 7$
 $x = -5 \pm 7$
 $x = -5 \pm 7$
 $5 = -7 \pm -12$

Solve by completing the square.

3.
$$x^{2} + 18x - 40 = 0$$

 $x^{2} + 18x + 81 = 40 + 90$
 $(x+9)^{2} = -121$
 $x+9 = \pm 11$
 $x=-9\pm 11$
 $-9+11=20$

•

Solve by completing the square.

4.
$$2x^{2} + 6x = 7$$
 make leading coefficient $\frac{1}{2}$.
 $X^{2} + 3x + 9 = 72 + 91$
 $(x + 3)^{2} = 14 + 9$
 $(x + 3)^{2} = 14 + 9$
 $(x + 3)^{2} = -\frac{14}{4} + 9$
 $(x + 3)^{2} = -\frac{14}{4} + 9$
 $(x + 3)^{2} = -\frac{23}{4}$
 $\chi + 3 = -\frac{1}{2} + \sqrt{23}$
 $\chi = -\frac{3}{2} + \sqrt{23} = -3 + \sqrt{23}$
 $\chi = -\frac{3}{2} + \sqrt{23} = -3 + \sqrt{23}$

Solve by completing the square.

5.
$$2x^{2} + 10x = 6$$

$$x^{2} + 5x + 95 = 3 + 25$$

$$(x + 5)^{2} = \frac{12}{4} + \frac{25}{4}$$

$$(x + 5)^{2} = \frac{37}{4}$$

$$(x + 5)^{2} = \frac{37}{4}$$

$$x + 5 = \pm \sqrt{37}$$

$$x = -5 \pm \sqrt{37}$$

$$X = -5 \pm \sqrt{37}$$