Zero Product Property
 If $\mathrm{pq}=0$, then $\mathrm{p}=0$ or $\mathrm{q}=0$

Solve each of the following using the zero product property.

$$
\begin{aligned}
& \text { 1. } \begin{array}{c}
\boldsymbol{x}(\boldsymbol{x}-5)=\mathbf{0} \\
x=0 \text { or } x-5=0 \\
x=5
\end{array} \quad x=\{0,5\}
\end{aligned}
$$

2. $(2 c-1)(c+4)^{2}=0$

$$
\begin{array}{cr}
2 c-1=0 & \text { or } c+4=0 \\
2 c=1 & c=-4 \\
c=\frac{1}{2} & \text { double root or } \\
\text { multiplicity of } 2
\end{array}
$$

$$
\text { 3. }(x-2)^{2}\left(x^{2}-9\right)=0
$$

$$
(x-2)^{2}(x+3)(x-3)=0
$$

$$
\begin{gathered}
x-2=0 \text { or } x+3=0 \text { or } x-3=0 \\
x=2 \text { or } x=-2
\end{gathered}
$$

$$
x=2 \text { or } x=-3 \text { or } x=3
$$

Use factoring and the Zero Product Property to solve.

$$
\begin{aligned}
& \text { 1. } 3 r^{2}=10 r+8 \\
& \text { 2. } x^{2}+25=10 x \\
& x^{2}-10 x+25=0 \\
& (x-5)(x-5)=0 \text { or }(x-5)^{2}=0 \\
& \begin{array}{r}
x-5=0 \\
x=5
\end{array} \\
& \text { 3. }(a+3)(a-3)=40 \\
& a^{2}=96=400 \\
& a^{2}-49=0 \\
& (a+7)(a-7)=0 \\
& \begin{array}{l}
a+7=0 \text { or } a-7=0 \\
a=-7 \text { or } a=7 \\
\text { or } a= \pm 7
\end{array}
\end{aligned}
$$

Use factoring and the Zero Product Property to find the zeroes of each quadratic function.
1.

$$
\begin{aligned}
& f(x)=x^{2}+7 x+6 \\
& 0=x^{2}+7 x+6 \\
& 0=(x+6)(x+1) \\
& x+6=0 \quad x+1=0 \\
& x=6 \text { or } x=-1
\end{aligned}
$$

2. $g(x)=15 x^{2}-8 x+1$

