1-6 Absolute Value Equations and Inequalities

Solve and graph each equitation on a number line. Be sure to check your solutions.
Always check your solutions

$$
\text { 3. }|x+2|=5
$$

Check
4. $|2 x+3|-1=2$,

$$
\begin{array}{lc}
x+2=5 \text { or } x+2=-5|3+2|=5 & \text { iso l }|=-2| \text { before } 2 \text { parts } \\
x=3 \text { or } x=-7 & |5|=5,
\end{array}|2 x+3|=3
$$

$$
x=3 \text { or } x=-7
$$

$$
\begin{array}{ccccc}
0 & 5=5 & 2 x+3=-3 & \text { or } 2 x+3=-3 \\
-7 & 0 & 211111 & |-7+2|=5 & 2 x=0
\end{array}
$$

$$
|-5|=5
$$

$$
\begin{array}{lll}
\frac{2 x}{2}=\frac{0}{2} & \frac{2 x}{2}=\frac{-6}{2} \\
x=0 & \text { or } x & =-3 \\
\text { Check }<\phi \text {, } & 0
\end{array}
$$

$$
\left\lvert\, \begin{aligned}
& |2(0)+3|-1=2|2(-3)+3|-1=2 \\
& |0+3|-1=2
\end{aligned}\right.
$$

$$
\begin{aligned}
& \left.\left|\begin{array}{l}
10+31-1= \\
0+3 \mid-1 \\
10(-3)+3 \mid-1=2 \\
1 \\
31-1 \\
3-1=2
\end{array}\right|-6+3 \right\rvert\,-1=2 \\
& |-3|-1=2
\end{aligned}
$$

$$
3-1=2 \quad|-3|-1=2
$$

5. $-3|x-1|+5=8 \quad$ Check

$$
\begin{aligned}
2=2 \sqrt{2-1} & =2 \\
2 & =2 \sqrt{3}
\end{aligned}
$$

$$
\frac{-3}{-3}|x-1|=\frac{3}{-3}
$$

6. $|x-1|=5 x+10$

Thersites;
No solution

$$
\begin{aligned}
& \text { Check } \\
& \left|\begin{array}{c}
\text { Check } \\
x-1 \\
\frac{y}{4}
\end{array}\right|=5 x+10 \\
& \left|-\frac{11}{4}-\frac{4}{7}\right|=5\left(\frac{-11}{4}\right)+10 \\
& \left|-\frac{15}{4}\right|=-\frac{55}{4}+10 \frac{40}{4} \\
& \frac{15}{4}=\frac{-15}{4} \\
& \begin{array}{l}
x=\frac{-11}{4} \\
\text { mot a } \\
\text { solution }
\end{array} \\
& \left|\begin{array}{l}
-\frac{3}{2}-1 \frac{2}{3} \\
-5
\end{array}\right|=5\left(\frac{-3}{2}\right)+10 \\
& \left|-\frac{5}{2}\right|=-\frac{15}{2}+10=\frac{20}{2} \\
& \frac{5}{2}= \\
& \frac{5}{2} \\
& 50
\end{aligned}
$$

$$
\begin{aligned}
& \text { in the ORIGINAL problem } \\
& \text { 1. }|x|=2 \\
& \text { Check } \\
& x=2 \text { or } x=-2 \quad|2|=2 \\
& 2=2 \checkmark \\
& \text { 2. }|x|=1 \\
& x=1 \text { or } x=-1 \quad|1|=1
\end{aligned}
$$

1-6 Continued...Absolute Value Inequalities

Solve and graph each inequality on a number line.

1. $|x|>2$

2. $|x|<2$

Hmm...what numbers have an absolute value greater than 2? LOTS!!
\} Graph
$\left.\begin{array}{l}\text { Hmm...what numbers } \\ \text { have an absolute value } \\ \text { less than 2? LOTS!! }\end{array}\right\}$ 'em!

Does this look like
an "and" or an "or "
graph?

Does this look like an "and" or an "or " graph?

Remember, isolate the absolute value first, then decide if it's an "and" or an "or".(Great"or" Less th"and")
3. $|x+3| \leq 3$ AND
4. $-2|x-1|<-6$

Skipped this one

$$
\begin{gathered}
x+3 \leq 3 \text { and } x+3 \geq-3 \\
-3-3 \text { and } x \geq-6 \\
x \leq 0 \text { and } \\
\qquad \text { ? }
\end{gathered}
$$

Answer: $-6 \leq x \leq 0 \quad$ Answer:

Answer:
6. $14>-2|x-1|+8$ abs
value

Hamm.....
$-2|x-1| \pm 8<14$

Answer: All real

2.1 Functions!

Domain: \quad in $\rho u+$
Range: out Put

What is a function?
A function is a relation that has exactly one y-value for each x-value.

For each relation state the domain, range, and if it is a function (explain how you know).
a)

$$
(3,1),(2,1),(-4,1),(9,0)
$$

b)

Domain: $\{3,2,-4,9\}$
Range: $\{1, \bigcirc\}$
Function?? How do you know? yes 1 is a
$\begin{array}{cl}\text { every function } & \text { Domain: }\{-2,3,-7\} \\ \text { has exactly } & \text { Range: }\{413,2,1\} \\ \text { one y-ualue. } & \text { Function?? How do you know? }\end{array}$
Not A function because the x-value, -2 , has two y-values.

Domain: $\{5, \neq,-1\}$
Range: $\{2,-3\}$
Function?? How do you know?
yes function.
Everyx-value has exactly one y-value.

Vertical line test
For each relation state the domain, range, and if it is a function (explain how you know).
d)

domain: all real \#'s range: $y \geq 1$

It is a function be cause vertical line only intersection at one point.
e)

 domain: $-2 \leq x \leq 2$ range: $-2 \leq y \leq 2$ It is not a function intersects in more than one point.

