1-4 Solving Equations

This is like skill 2

(clear denominators)

1. (clear denominators)
$$24\left(\frac{5}{8} + \frac{2}{3}x = 2x - \frac{3}{4}\right)$$

$$3(w+p) \text{ for } r \text{ e.g.}$$

$$\frac{33}{32} = \frac{32}{32} \times \frac{33}{32}$$

$$\frac{3 \cdot d = 3r(w+p)}{3r} \text{ for p}$$

$$\frac{d}{3r} = \omega + \rho$$

$$\frac{d}{3r} = \omega = \rho$$

$$\left(\rho = \frac{d}{3r} - \omega \right)$$

3.
$$\frac{d=3\pi(w+p)}{3r}$$
 for p

4. Solve $y = \frac{u+1}{u+2}$ for u .

$$\frac{d}{3r} = \omega + \rho$$

$$\frac{d}{3r} = \omega + \rho$$

$$y(u+2) = u+1$$

$$yu+2y =$$

flove this one!!

5. Solve for R:
$$r_{1}R_{2} = \frac{3}{R} + \frac{2}{r_{2}}$$

$$R_{2}R_{3} = r_{1}R_{3} \cdot \frac{3}{R} + r_{1}R_{3} \cdot \frac{3}{R}$$

$$R_{2}R_{3} = 3r_{1}r_{2} + 2r_{1}R_{3}$$

$$R_{3}R_{4}R_{5} = 3r_{1}R_{5} \cdot \frac{3}{R}$$

$$R_{4}R_{5}R_{5} \cdot \frac{3}{R} + r_{1}R_{5}R_{5} \cdot \frac{3}{R}$$

$$R_{5}R_{5}R_{5} = 3r_{1}R_{5} \cdot \frac{3}{R}$$

$$R_{7}R_{5}R_{5}R_{5} = 3r_{1}R_{5}$$

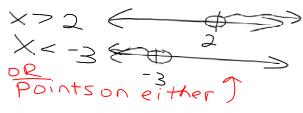
$$R_{7}R_{5}R_{5}R_{5}R_{5} = 3r_{1}R_{5}$$

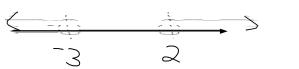
$$R_{7}R_{5}R_{5}R_{5}R_{5}$$

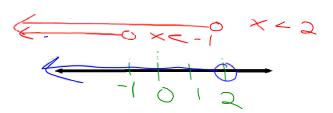
$$R_{7}R_{5}R_{5}R_{5}$$

$$R_{7}R_{$$

1-5 Solving Compound Inequalities


1.
$$4-x < 2$$
 or $-1 > x + 2$ 2. $3x - 4 < 2$ or $4 > x + 5$


$$- \times -2 -2 -2 -2 -2 -2 -2 -2 -3 -5 -5$$


$$\times > 2 \text{ or } \times < -3$$

$$\times > 2 \text{ or } \times < -3$$

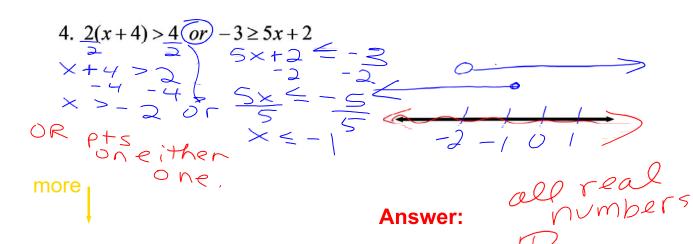
2.
$$3x-4 < 2$$
 or $4 > x+5$
 $\frac{3 \times}{3} < \frac{6}{3}$ or $\times +5 < \frac{4}{5}$
 $\times < 2$ or $\times < -1$

Answer: $\times > 2 \text{ or } \times < -3$

Answer: $\times < \bigcirc$

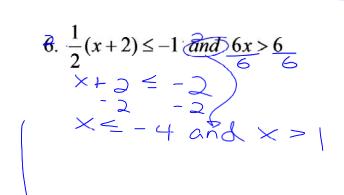
3.
$$3-2x \ge x+6$$
 and $\frac{-x}{2}+1<3$

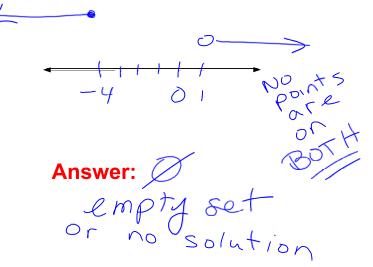
$$-3 - x - x - 3$$


$$-3 \times \ge 3$$

$$-x - 4$$

$$\times \le -1$$
Answer:


Answer:


Answer:

5.
$$x+1>3$$
 and $-2x<-8$
 $x>2$ and $x>4$

$$7. -2 \le 3x + 4 < 4$$

$$-6 \le 3 \times 6$$

$$3 \times 6 \times 6$$

$$-2 \le 2 \times 6 \times 6 \times 6$$

Answer: $-2 \le \times < \bigcirc$