16. Using Cramer's Rule to solve the following system. What would D_{z} be?
17. Solve for z: $\quad M=\frac{x+y-z+w}{7}$
18. What term completes the square for $x^{2}+10 a x$
19. Is this function linearly related?

x	y
-2	3
-6	15
-7	18

4. The values in the table are linearly related. Answer the following questions:

x	y	a) is $A>B$?
536	2	b) is $B>A$?
646	A	c) is $A=B$?
756	10	d) $A+B=?$

5.Write the equation of the line that contains $(0,2)$ and $(3,0)$ in standard form.
6. A is directly proportional to the square root of B. If $A=10$ when $B=25$, Find B when A is 4 .
7. Find the least squares regression line and use it to estimate the y value when $x=10.5$
Round to 4 places after the decimal.

x	0	2	3	6	7	9	12
y	14	19	22	26	26	32	38

8. Solve and graph

$$
4 x+5>1 \text { and } 3 \geq-7+2 x
$$

9. Solve for $\mathrm{x}|3 x-1| \leq 9$
10. Graph $-5-3 i$
11. How many solutions does this system have? $\left\{\begin{array}{l}y=3 x+5 \\ -3 x+y=7\end{array}\right.$
12. $|3-7 i|=$
13. Graph $y>\frac{3}{4} x-1$
14. The Lenc family is going to Taco-Shmaco for tacos and sodas. Write an inequality to represent how many sodas they can buy if soda costs $\$ 1.85$ each and tacos are $\$ 2.20$ each. They only have $\$ 15$ to spend.
15. Graph the solution $\left\{\begin{array}{l}x+3 y>6 \\ 2 x-y \geq 2\end{array}\right.$
$x+y+z=5$
$x-y+2 z=2$
$x+y=6$
16. How many solutions does this system
have? $\left\{\begin{array}{l}3 x+y-5=0 \\ 5 x=2 y+8\end{array}\right.$
17. Four shirts and 3 jackets cost $\$ 313$. While five jackets and 2 shirts cost $\$ 419$. How much does each jacket cost?
18. Find three ordered pairs that satisfy $\frac{3}{4} x-\frac{1}{2} y \geq-1$
19. Find an ordered pair that satisfies this system. $\left\{\begin{array}{l}y>-3 x-1 \\ -3 x+y \leq 5\end{array}\right.$
21.Solve $k^{2}+625=0$
20. What are the zeroes of
$f(x)=3 x^{2}-13 x-10$
21. Find the x-intercepts of
$f(x)=(2-x)(x+3)$
22. Use the quadratic formula to solve.

Round to nearest tenths. $3 x^{2}-4 x=5$
25. Find the sum of the first 100 terms of the series $20+16+12+8+\ldots$
26. When $\frac{1-3 i}{2+i}$ is put in a+bi form, what is the value of a ?
27. How many real solutions are there for $x^{2}+3 x+10=0$
28. Find the solution for $x^{2}-7 x \geq 30$
29.Simplify: $(5+6 i)-2(4-5 i)$
30. Simplify: $\frac{5+3 \bullet 5^{3}}{3\left(6+2^{2}\right)+4 \bullet 2}-5^{2}$
31. Describe the transformation that took place from $\mathrm{g}(\mathrm{x})$ to $\mathrm{h}(\mathrm{x})$ if
$g(x)=x^{2}$ and $h(x)=-3(x-6)^{2}$
32. Solve $\frac{2}{3} x-\frac{3}{4}-\frac{3}{8} x=\frac{8}{5} x-1$
33. For the sequence $-1,-9,-17, \ldots .$.
a) Write an explicit definition for the sequence above.
b) Write a recursive definition for the sequence above.
34. Find S_{50} for $5,11,17,23, \ldots$
35. Find the $5^{\text {th }}$ term for $\left\{\begin{array}{l}a_{1}=3 \\ a_{n}=a_{n-1}+6\end{array}\right.$
36. Find the value of $\sum_{k=1}^{100} 3 k^{2}-2 k+2$
37. For the sequence $-1,5,-25,125, \ldots$
a) Write an explicit definition for the sequence above.
b) Write a recursive definition for the sequence above.
38. Find a_{308} for an arithmetic sequence with $a_{3}=6$ and $a_{14}=39$
39. Write and explicit formula for $-10,15,-22.5,33.75, \ldots$
40. $f(x)=2 x^{2}-3 x$ what is $f(a+1)$?
41. Write an example of the following properties:
a)Distributive property
b)Associative property of Addition
c) Commutative property of Multiplication
d) Inverse property of Addition
42. Simplify $\left(\frac{-2 x^{-3} y^{5}}{3 x^{4} y^{0}}\right)^{3}$
43.
$f(x)=2 x+5$ and $g(x)=3 x^{2}-1$
find $(f \circ g)(-1)$
44. Write an equation of a possible polynomial with roots are $x=-3, x=4$
$h(x)=x+3$ and $g(x)=(x+1)^{2}-1$ find $(h \circ g)(x)$
46. if $-3+5+13+\ldots+453=13050$ find n
47. $\sum_{i=1}^{200} 3(-1)^{i-1} \approx$
48. Write the equation of the line in slope intercept form that is perpendicular to
$y=\frac{3}{2} x-4$ and contains $(-3,1)$
49. solve: $-3(y-7)+3=3 y-(y+1)$
50. solve: $|5 x-10|=20$
51. solve: $\frac{3}{m+1}=\frac{7}{2 m+3}$
52. solve: $|3 x-7|>13$
53. Write a quintic binomial
54. Simplify and give in standard form:
$\left(3 x^{2}-4 x^{5}+3 x^{3}-4\right)-2\left(5 x^{4}+x-2 x^{3}+3\right)$
55. Simplify and give in standard form:
$(x-4)(x+1)^{2}$
56. Find $P(-15)$ if
$P(x)=\frac{1}{5} x^{3}+\frac{2}{15} x^{2}-4 x+5$
57. Factor completely: $27 y^{3}-64$
58. Find the quotient when
$3 x^{3}+11 x^{2}+5 x-3$ is divided by $x+3$
59. Find the quotient when
$2 x^{5}+9 x^{4}-4 x^{3}-x^{2}+11 x-10$ is
divided by $2 x^{2}+x-2$
60. What are the possible polynomial factors of the graph:
61. Find all the solutions.
$5 x^{3}-2 x^{2}+4 x-7=0$
62. What is the zero(es) of this graph?
63. Find all the zeroes of $f(x)$ if
$f(x)=x^{3}+4 x^{2}-2 x-5$
64.If when $P(x)=0$ one root is $3+8 i$ what must another root be?
65. What is the set of all possible rational
roots for $f(x)=x^{4}-3 x^{3}+5 x^{2}+6 x-12$
66. Find the remainder when $3 x^{2}-2 x+6$ is divided by $x+3$
67. Find all the roots of
$f(x)=x^{3}+x^{2}-5 x-5$
68. Use synthetic division to show if $x+3$ is a
factor of $x^{3}-3 x^{2}+9$
69. Simplify:
$\left(2 x^{5}-3 x^{4}\right)+\left(2 x^{2}-8\right)-\left(3 x^{2}-x+9\right)$

