st semester Final Exam review \# 32012
dvanced Algebra 2:

Write an explicit formula for problems 1 \& 2

1. $\left.-12,-3,6,15,24, \ldots G_{n}--12+Q_{n}-1\right)$
2. First term of 6 and a common ration of $-4 a_{n}=6(-4)^{n-1}$
3. Find the $12^{\text {th }}$ term of the sequence $16,13,10, \ldots-17$
4. Find the $37^{\text {th }}$ term of the arithmetic sequence in which $a_{3}=15$ and $a_{6=} 39$
5. Find the $10^{\text {th }}$ term of the sequence $0.25,1,4,16, \ldots 65,536$
6. Find S_{30} in the arithmetic series with $a_{1}=15$ and $a_{30}=521 \quad 8,040$
7. Evaluate the sum $\sum_{n=1}^{20}(6 n-52) \quad 220$
8. Evaluate the sum given: $32,16,8, \ldots$ find $S_{10} 63.9375$
9. In the month of June, Becca saved 1 quarter the first day, 3 quarters the $2^{\text {nd }}$ day, 5 quarters the $3^{\text {rd }}$ day, and so on. How much MONEY did she save in the month of June? (June has 30 days) $\$ 225$
10. The table below gives the price of a hamburger at a diner for selected years.

Year	1950	1955	1963	$\mathbf{1 9 6 9}$	1975	1982	1995	1998
Price $\$$	0.25	0.35	0.40	0.50	0.75	1.25	1.75	1.95

Le \times ry present years since 1900 and let y represent the cost of a hamburger in dollars. and use it to estimate to the nearest cent, the price of a hamburger at this diner in 1990. $y=.0366579936 x-1.789780283$

Write the equation of the following lines:

11. Passing through the points $(-2,5)$ and $(1,7)$ standard Form $2 x-3 y=-19$
12. Passing through the point $(-2,8)$ with $m=5$ Slope intercept form $y=5 x+18$
13. Passing through the point $(1,-4)$ parallel to $\left.2 x-4 y=7 \underline{\text { Point Slope form }} \quad y+4=\frac{1}{2}(x-1)\right)$.
14. Passing through the point $(5,1)$ perpendicular to $3 x+y=-8$ Point Slope form

Solve the following:

15. $2(x+3)-4 x=17$

$$
x=-11 / 2
$$

16. $4 x+2 \leq 22$ and $3 x-5>31$
17. Solve for $\mathrm{x}: 3 x y-4 z=15 \quad x=\frac{15+4 z}{3 y}$
18. $|2 x+5|>7$

$$
\text { 18. }|2 x+5|>7
$$

$$
x>1 \text { or } x<-6
$$

19. $|x-5| \leq 10^{-5} \leq x \leq 15$
20. $\left\{\begin{array}{c}2 x-4 y=10 \\ 5 x+y=3\end{array} \quad(1,-2)\right.$
21. $\left\{\begin{array}{c}2 x-5 y+z=-13 \\ x+y+z=6 \\ 2 y-4 z=-10\end{array} \quad(-1,3,4)\right.$
22. $2 x^{2}-x-10=0 \quad x=\left\{\frac{5}{2},-2\right\}$
23. $x^{2}+2 x=-5$
$y-1=\frac{1}{3}(x-5)$
$x=-1 \pm 2 i$
24. $\frac{\text { Simplify: }}{\left(\frac{3 x}{2 y}\right)^{2}}=\frac{9 X^{2}}{4 y^{2}}$
25. $\sqrt[3]{-54 x^{5} y^{4}}=-3 x y \sqrt[3]{2 x^{2} y}$
26. $\left(3 x^{0} y^{2}\right)^{4}=8 / y^{8}$
27. $\left(\frac{4 x^{-2} y^{3}}{3 x^{4} y^{-2}}\right)^{3}=\frac{64 y^{15}}{27 x^{18}}$
28. $60 \div 4(7+3-5)-\left(3^{(5-2)}+1\right) \quad 47$
29. Which property is this? $x+4-x)=x+(x+4)$
commutative prop of addition

30. What should be added to each side of
$x^{2}+13 x+2=0$ to complete the squar
31. $i^{233}=$
$\frac{7}{4}+\frac{1}{4}{ }^{i}$
$36 .(5+7 i)^{2}-24+70 i$
32. Find the following for

$$
f(x)=2 x-5 \quad g(x)=x^{2}+2
$$

$$
\text { 31. }\left\{\begin{array}{l}
5 x+4 y=12 \\
x+4 y=-4
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{4 y}{4}=\frac{12}{4}-\frac{5 x}{4} \\
& y=-5 / 4 x+3 \\
& \text { solution: }(4,-2)
\end{aligned}
$$

32. A) Graph the set of constraints below, find the corner points of the feasible region.

Corner points: $(5,-2),(-5,-2),(0,3)$
B) Find the maximum and Minimum values of $C=80 x+75 y$ on the feasible region.

a) $f(-3)=-11$
b) $g(5)=27$
c) $f \circ g(x)=2 x^{2}-1$
d) $g \circ f(-2)=83$
38. Find the discriminant and state the number of solutions and what type they are.
a) $3 x^{2}-\mathbf{j} x+2=0$
$-23,2$ imaginary solutions
b) $5 x-x^{2}=3$ -

13, 2 irrational roots
c) $6-x^{2}=x$

25, 2 rational roots

39. Solve:
a) $(x-2)^{2}-3=9 \quad$ d) $8 x^{3}+125=0$

$$
x=-2 \pm 2 \sqrt{3} \quad x=-2.5,(5 \pm 5 i \sqrt{3}) / 4
$$

b) $x^{2}-7 x+6=0 \quad$ e) $x^{3}-7 x^{2}+15 x=9$

$$
x=6,1 \quad x=1,3 \text { (multiplicity } 2 \text {) }
$$

c) $4 x^{2}=3 x-2 \quad$ f) $x^{5}-x^{3}-12 x=0$

$$
x=(3 \pm i \sqrt{23}) / 8 \quad x=0, \pm 2, \pm i \sqrt{3}
$$

40. Factor completely:
a) $27 y^{3}-8$
$=(3 y-2)\left(9 y^{2}+6 y+4\right)$
b) $4 x^{2}+10 x-3$
$=$ prime
c) $3 y^{3}+6 y^{2}-9 y$
$=3 y(y+3)(y-1)$
d) $y^{4}-2 y^{2}-8$
$=(y+2)(y-2)\left(y^{2}+2\right)$
e) $36 x^{2}-49 y^{2}$

$$
=(6 x+7 y)(6 x-7 y)
$$

f) $2 x^{2}+13 x y+6 y^{2}=(2 x+y)(x+6 y)$
41. Divide using synthetic division $=x^{2}+2 x-1+6 /(x-2)$

$$
\left(x^{3}-5 x+8\right) \div(x-2)
$$

42. Divide: $\left(2 x^{4}-x^{3}+2 x^{2}-7 x+3\right) \div(2 x-1)$

$$
=x^{3}+x-3
$$

